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Path Planning in Environments of Different Complexity
This example demonstrates how to compute an obstacle-free path between two locations on a given
map using the Probabilistic Roadmap (PRM) path planner. PRM path planner constructs a roadmap in
the free space of a given map using randomly sampled nodes in the free space and connecting them
with each other. Once the roadmap has been constructed, you can query for a path from a given start
location to a given end location on the map.

In this example, the map is represented as an occupancy grid map using imported data. When
sampling nodes in the free space of a map, PRM uses this binary occupancy grid representation to
deduce free space. Furthermore, PRM does not take into account the robot dimension while
computing an obstacle-free path on a map. Hence, you should inflate the map by the dimension of the
robot, in order to allow computation of an obstacle-free path that accounts for the robot's size and
ensures collision avoidance for the actual robot. Define start and end locations on the map for the
PRM path planner to find an obstacle-free path.

Import Example Maps for Planning a Path

load exampleMaps.mat

The imported maps are : simpleMap, complexMap and ternaryMap.

whos *Map*

  Name              Size               Bytes  Class      Attributes

  complexMap       41x52                2132  logical              
  emptyMap         26x27                 702  logical              
  simpleMap        26x27                 702  logical              
  ternaryMap      501x501            2008008  double               

Use the imported simpleMap data and construct an occupancy grid representation using the
binaryOccupancyMap object. Set the resolution to 2 cells per meter for this map.

map = binaryOccupancyMap(simpleMap,2);

Display the map using the show function on the binaryOccupancyMap object

show(map)
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Define Robot Dimensions and Inflate the Map

To ensure that the robot does not collide with any obstacles, you should inflate the map by the
dimension of the robot before supplying it to the PRM path planner.

Here the dimension of the robot can be assumed to be a circle with radius of 0.2 meters. You can then
inflate the map by this dimension using the inflate function.

robotRadius = 0.2;

As mentioned before, PRM does not account for the dimension of the robot, and hence providing an
inflated map to the PRM takes into account the robot dimension. Create a copy of the map before
using the inflate function to preserve the original map.

mapInflated = copy(map);
inflate(mapInflated,robotRadius);

Display inflated map

show(mapInflated)

 Path Planning in Environments of Different Complexity
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Construct PRM and Set Parameters

Now you need to define a path planner. Create a mobileRobotPRM object and define the associated
attributes.

prm = mobileRobotPRM;

Assign the inflated map to the PRM object

prm.Map = mapInflated;

Define the number of PRM nodes to be used during PRM construction. PRM constructs a roadmap
using a given number of nodes on the given map. Based on the dimension and the complexity of the
input map, this is one of the primary attributes to tune in order to get a solution between two points
on the map. A large number of nodes create a dense roadmap and increases the probability of finding
a path. However, having more nodes increases the computation time for both creating the roadmap
and finding a solution.

prm.NumNodes = 50;

Define the maximum allowed distance between two connected nodes on the map. PRM connects all
nodes separated by this distance (or less) on the map. This is another attribute to tune in the case of
larger and/or complicated input maps. A large connection distance increases the connectivity
between nodes to find a path easier, but can increase the computation time of roadmap creation.

prm.ConnectionDistance = 5;
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Find a Feasible Path on the Constructed PRM

Define start and end locations on the map for the path planner to use.

startLocation = [2 1];
endLocation = [12 10];

Search for a path between start and end locations using the findpath function. The solution is a set
of waypoints from start location to the end location. Note that the path will be different due to
probabilistic nature of the PRM algorithm.

path = findpath(prm, startLocation, endLocation)

path = 7×2

    2.0000    1.0000
    1.9569    1.0546
    1.8369    2.3856
    3.2389    6.6106
    7.8260    8.1330
   11.4632   10.5857
   12.0000   10.0000

Display the PRM solution.

show(prm)
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Use PRM for a Large and Complicated Map

Use the imported complexMap data, which represents a large and complicated floor plan, and
construct a binary occupancy grid representation with a given resolution (1 cell per meter)

map = binaryOccupancyMap(complexMap,1);

Display the map.

show(map)

Inflate the Map Based on Robot Dimension

Copy and inflate the map to factor in the robot's size for obstacle avoidance

mapInflated = copy(map);
inflate(mapInflated, robotRadius);

Display inflated map.

show(mapInflated)
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Associate the Existing PRM Object with the New Map and Set Parameters

Update PRM object with the newly inflated map and define other attributes.

prm.Map = mapInflated;

Set the NumNodes and the ConnectionDistance properties.

prm.NumNodes = 20;
prm.ConnectionDistance = 15;

Display PRM graph.

show(prm)
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Find a Feasible Path on the Constructed PRM

Define start and end location on the map to find an obstacle-free path.

startLocation = [3 3];
endLocation = [45 35];

Search for a solution between start and end location. For complex maps, there may not be a feasible
path for a given number of nodes (returns an empty path).

path = findpath(prm, startLocation, endLocation);

Since you are planning a path on a large and complicated map, larger number of nodes may be
required. However, often it is not clear how many nodes will be sufficient. Tune the number of nodes
to make sure there is a feasible path between the start and end location.

while isempty(path)
    % No feasible path found yet, increase the number of nodes
    prm.NumNodes = prm.NumNodes + 10;
    
    % Use the |update| function to re-create the PRM roadmap with the changed
    % attribute
    update(prm);
    
    % Search for a feasible path with the updated PRM
    path = findpath(prm, startLocation, endLocation);
end
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Display path.

path

path = 12×2

    3.0000    3.0000
    4.2287    4.2628
    7.7686    5.6520
    6.8570    8.2389
   19.5613    8.4030
   33.1838    8.7614
   31.3248   16.3874
   41.3317   17.5090
   48.3017   25.8527
   49.4926   36.8804
      ⋮

Display PRM solution.

show(prm)
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Path Following for a Differential Drive Robot
This example demonstrates how to control a robot to follow a desired path using a Robot Simulator.
The example uses the Pure Pursuit path following controller to drive a simulated robot along a
predetermined path. A desired path is a set of waypoints defined explicitly or computed using a path
planner (refer to “Path Planning in Environments of Different Complexity” on page 1-2). The Pure
Pursuit path following controller for a simulated differential drive robot is created and computes the
control commands to follow a given path. The computed control commands are used to drive the
simulated robot along the desired trajectory to follow the desired path based on the Pure Pursuit
controller.

Note: Starting in R2016b, instead of using the step method to perform the operation defined by the
System object™, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Define Waypoints

Define a set of waypoints for the desired path for the robot

path = [2.00    1.00;
        1.25    1.75;
        5.25    8.25;
        7.25    8.75;
        11.75   10.75;
        12.00   10.00];

Set the current location and the goal location of the robot as defined by the path.

robotInitialLocation = path(1,:);
robotGoal = path(end,:);

Assume an initial robot orientation (the robot orientation is the angle between the robot heading and
the positive X-axis, measured counterclockwise).

initialOrientation = 0;

Define the current pose for the robot [x y theta]

robotCurrentPose = [robotInitialLocation initialOrientation]';

Create a Kinematic Robot Model

Initialize the robot model and assign an initial pose. The simulated robot has kinematic equations for
the motion of a two-wheeled differential drive robot. The inputs to this simulated robot are linear and
angular velocities.

robot = differentialDriveKinematics("TrackWidth", 1, "VehicleInputs", "VehicleSpeedHeadingRate");

Visualize the desired path

figure
plot(path(:,1), path(:,2),'k--d')
xlim([0 13])
ylim([0 13])
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Define the Path Following Controller

Based on the path defined above and a robot motion model, you need a path following controller to
drive the robot along the path. Create the path following controller using the 
controllerPurePursuit object.

controller = controllerPurePursuit;

Use the path defined above to set the desired waypoints for the controller

controller.Waypoints = path;

Set the path following controller parameters. The desired linear velocity is set to 0.6 meters/second
for this example.

controller.DesiredLinearVelocity = 0.6;

The maximum angular velocity acts as a saturation limit for rotational velocity, which is set at 2
radians/second for this example.

controller.MaxAngularVelocity = 2;

As a general rule, the lookahead distance should be larger than the desired linear velocity for a
smooth path. The robot might cut corners when the lookahead distance is large. In contrast, a small
lookahead distance can result in an unstable path following behavior. A value of 0.3 m was chosen for
this example.

controller.LookaheadDistance = 0.3;
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Using the Path Following Controller, Drive the Robot over the Desired Waypoints

The path following controller provides input control signals for the robot, which the robot uses to
drive itself along the desired path.

Define a goal radius, which is the desired distance threshold between the robot's final location and
the goal location. Once the robot is within this distance from the goal, it will stop. Also, you compute
the current distance between the robot location and the goal location. This distance is continuously
checked against the goal radius and the robot stops when this distance is less than the goal radius.

Note that too small value of the goal radius may cause the robot to miss the goal, which may result in
an unexpected behavior near the goal.

goalRadius = 0.1;
distanceToGoal = norm(robotInitialLocation - robotGoal);

The controllerPurePursuit object computes control commands for the robot. Drive the robot
using these control commands until it reaches within the goal radius. If you are using an external
simulator or a physical robot, then the controller outputs should be applied to the robot and a
localization system may be required to update the pose of the robot. The controller runs at 10 Hz.

% Initialize the simulation loop
sampleTime = 0.1;
vizRate = rateControl(1/sampleTime);

% Initialize the figure
figure

% Determine vehicle frame size to most closely represent vehicle with plotTransforms
frameSize = robot.TrackWidth/0.8;

while( distanceToGoal > goalRadius )
    
    % Compute the controller outputs, i.e., the inputs to the robot
    [v, omega] = controller(robotCurrentPose);
    
    % Get the robot's velocity using controller inputs
    vel = derivative(robot, robotCurrentPose, [v omega]);
    
    % Update the current pose
    robotCurrentPose = robotCurrentPose + vel*sampleTime; 
    
    % Re-compute the distance to the goal
    distanceToGoal = norm(robotCurrentPose(1:2) - robotGoal(:));
    
    % Update the plot
    hold off
    
    % Plot path each instance so that it stays persistent while robot mesh
    % moves
    plot(path(:,1), path(:,2),"k--d")
    hold all
    
    % Plot the path of the robot as a set of transforms
    plotTrVec = [robotCurrentPose(1:2); 0];
    plotRot = axang2quat([0 0 1 robotCurrentPose(3)]);
    plotTransforms(plotTrVec', plotRot, "MeshFilePath", "groundvehicle.stl", "Parent", gca, "View","2D", "FrameSize", frameSize);
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    light;
    xlim([0 13])
    ylim([0 13])
    
    waitfor(vizRate);
end

Using the Path Following Controller Along with PRM

If the desired set of waypoints are computed by a path planner, the path following controller can be
used in the same fashion. First, visualize the map

load exampleMaps
map = binaryOccupancyMap(simpleMap);
figure
show(map)
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You can compute the path using the PRM path planning algorithm. See “Path Planning in
Environments of Different Complexity” on page 1-2 for details.

mapInflated = copy(map);
inflate(mapInflated, robot.TrackWidth/2);
prm = robotics.PRM(mapInflated);
prm.NumNodes = 100;
prm.ConnectionDistance = 10;

Find a path between the start and end location. Note that the path will be different due to the
probabilistic nature of the PRM algorithm.

startLocation = [4.0 2.0];
endLocation = [24.0 20.0];
path = findpath(prm, startLocation, endLocation)

path = 8×2

    4.0000    2.0000
    3.1703    2.7616
    7.0797   11.2229
    8.1337   13.4835
   14.0707   17.3248
   16.8068   18.7834
   24.4564   20.6514
   24.0000   20.0000
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Display the inflated map, the road maps, and the final path.

show(prm);

You defined a path following controller above which you can re-use for computing the control
commands of a robot on this map. To re-use the controller and redefine the waypoints while keeping
the other information the same, use the release function.

release(controller);
controller.Waypoints = path;

Set initial location and the goal of the robot as defined by the path

robotInitialLocation = path(1,:);
robotGoal = path(end,:);

Assume an initial robot orientation

initialOrientation = 0;

Define the current pose for robot motion [x y theta]

robotCurrentPose = [robotInitialLocation initialOrientation]';

Compute distance to the goal location

distanceToGoal = norm(robotInitialLocation - robotGoal);

Define a goal radius
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goalRadius = 0.1;

Drive the robot using the controller output on the given map until it reaches the goal. The controller
runs at 10 Hz.

reset(vizRate);

% Initialize the figure
figure

while( distanceToGoal > goalRadius )
    
    % Compute the controller outputs, i.e., the inputs to the robot
    [v, omega] = controller(robotCurrentPose);
    
    % Get the robot's velocity using controller inputs
    vel = derivative(robot, robotCurrentPose, [v omega]);
    
    % Update the current pose
    robotCurrentPose = robotCurrentPose + vel*sampleTime; 
    
    % Re-compute the distance to the goal
    distanceToGoal = norm(robotCurrentPose(1:2) - robotGoal(:));
    
    % Update the plot
    hold off
    show(map);
    hold all

    % Plot path each instance so that it stays persistent while robot mesh
    % moves
    plot(path(:,1), path(:,2),"k--d")
    
    % Plot the path of the robot as a set of transforms
    plotTrVec = [robotCurrentPose(1:2); 0];
    plotRot = axang2quat([0 0 1 robotCurrentPose(3)]);
    plotTransforms(plotTrVec', plotRot, 'MeshFilePath', 'groundvehicle.stl', 'Parent', gca, "View","2D", "FrameSize", frameSize);
    light;
    xlim([0 27])
    ylim([0 26])
    
    waitfor(vizRate);
end
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See Also

• “Path Planning in Environments of Different Complexity” on page 1-2
• “Mapping with Known Poses” on page 1-19
• “Simulate Different Kinematic Models for Mobile Robots” on page 1-67
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Mapping with Known Poses
This example shows how to create a map of an environment using range sensor readings and robot
poses for a differential drive robot. You create a map from range sensor readings that are simulated
using the rangeSensor object. The differentialDriveKinematics motion model simulates
driving the robot around the room based on velocity commands. The rangeSensor gives range
readings based on the pose of the robot as it follows the path.

Reference Map and Figures

Load a set of example binary occupancy grids from exampleMaps, including simpleMap, which this
example uses.

load exampleMaps.mat

Create the reference binary occupancy map using simpleMap with a resolution of 1. Show the figure
and save the handle of the figure.

refMap = binaryOccupancyMap(simpleMap,1);
refFigure = figure('Name','SimpleMap');
show(refMap);
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Create an empty map of the same dimensions as the selected map with a resolution of 10. Show the
figure and save the handle of the figure. Lock the axes at the size of the map.

[mapdimx,mapdimy] = size(simpleMap);
map = binaryOccupancyMap(mapdimy,mapdimx,10);
mapFigure = figure('Name','Unknown Map');
show(map);
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Initialize Motion Model and Controller

Create a differential-drive kinematic motion model. The motion model represents the motion of the
simulated differential-drive robot. This model takes left and right wheels speeds or linear and angular
velocities for the robot heading. For this example, use the vehicle speed and heading rate for the
VehicleInputs.

diffDrive = differentialDriveKinematics("VehicleInputs","VehicleSpeedHeadingRate");

Create a pure pursuit controller. This controller generates the velocity inputs for the simulated robot
to follow a desired path. Set your desired linear velocity and maximum angular velocity, specified in
meters per second and radians per second respectively.

controller = controllerPurePursuit('DesiredLinearVelocity',2,'MaxAngularVelocity',3);

Set Up Range Sensor

Create a sensor with a max range of 10 meters. This sensor simulates range readings based on a
given pose and map. The reference map is used with this range sensor to simulate collecting sensor
readings in an unknown environment.
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sensor = rangeSensor;
sensor.Range = [0,10];

Create the Planned Path

Create a path to drive through the map for gathering range sensor readings.

path = [4 6; 6.5 12.5; 4 22; 12 14; 22 22; 16 12; 20 10; 14 6; 22 3];

Plot the path on the reference map figure.

figure(refFigure);
hold on
plot(path(:,1),path(:,2), 'o-');
hold off

Set the path as the waypoints of the pure pursuit controller.

controller.Waypoints = path;

Follow Path and Map Environment

Set the initial pose and final goal location based on the path. Create global variables for storing the
current pose and an index for tracking the iterations.

initPose = [path(1,1) path(1,2), pi/2];
goal = [path(end,1) path(end,2)]';
poses(:,1) = initPose';

Use the provided helper function exampleHelperDiffDriveCtrl. The helper function contains the
main loop for navigation the path, getting range readings, and mapping the environment.

The exampleHelperDiffDriveControl function has the following workflow:

• Scan the reference map using the range sensor and the current pose. This simulates normal range
readings for driving in an unknown environment.

• Update the map with the range readings.
• Get control commands from pure pursuit controller to drive to next waypoint.
• Calculate derivative of robot motion based on control commands.
• Increment the robot pose based on the derivative.

You should see the robot driving around the empty map and filling in walls as the range sensor
detects them.

exampleHelperDiffDriveCtrl(diffDrive,controller,initPose,goal,refMap,map,refFigure,mapFigure,sensor)
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Goal position reached

Differential Drive Control Function

The exampleHelperDiffDriveControl function has the following workflow:

• Scan the reference map using the range sensor and the current pose. This simulates normal range
readings for driving in an unknown environment.

• Update the map with the range readings.
• Get control commands from pure pursuit controller to drive to next waypoint.
• Calculate derivative of robot motion based on control commands.
• Increment the robot pose based on the derivative.

function exampleHelperDiffDriveControl(diffDrive,ppControl,initPose,goal,map1,map2,fig1,fig2,lidar)
sampleTime = 0.05;             % Sample time [s]
t = 0:sampleTime:100;         % Time array
poses = zeros(3,numel(t));    % Pose matrix
poses(:,1) = initPose';
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% Set iteration rate
r = rateControl(1/sampleTime);

% Get the axes from the figures
ax1 = fig1.CurrentAxes;
ax2 = fig2.CurrentAxes;

    for idx = 1:numel(t)
        position = poses(:,idx)';
        currPose = position(1:2);
        
        % End if pathfollowing is vehicle has reached goal position within tolerance of 0.2m
        dist = norm(goal'-currPose);
        if (dist < .2)
            disp("Goal position reached")
            break;
        end
        
        % Update map by taking sensor measurements
        figure(2)
        [ranges, angles] = lidar(position, map1);
        scan = lidarScan(ranges,angles);
        validScan = removeInvalidData(scan,'RangeLimits',[0,lidar.Range(2)]);
        insertRay(map2,position,validScan,lidar.Range(2));
        show(map2);
        
        % Run the Pure Pursuit controller and convert output to wheel speeds
        [vRef,wRef] = ppControl(poses(:,idx));
    
        % Perform forward discrete integration step
        vel = derivative(diffDrive, poses(:,idx), [vRef wRef]);
        poses(:,idx+1) = poses(:,idx) + vel*sampleTime; 
    
    
        % Update visualization
        plotTrvec = [poses(1:2, idx+1); 0];
        plotRot = axang2quat([0 0 1 poses(3, idx+1)]);
        
        % Delete image of the last robot to prevent displaying multiple robots
        if idx > 1
           items = get(ax1, 'Children');
           delete(items(1)); 
        end
    
        %plot robot onto known map
        plotTransforms(plotTrvec', plotRot, 'MeshFilePath', 'groundvehicle.stl', 'View', '2D', 'FrameSize', 1, 'Parent', ax1);
        %plot robot on new map
        plotTransforms(plotTrvec', plotRot, 'MeshFilePath', 'groundvehicle.stl', 'View', '2D', 'FrameSize', 1, 'Parent', ax2);
    
        % waiting to iterate at the proper rate
        waitfor(r);
    end
end
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Plan Path for a Differential Drive Robot in Simulink
This example demonstrates how to execute an obstacle-free path between two locations on a given
map in Simulink®. The path is generated using a probabilistic road map (PRM) planning algorithm
(mobileRobotPRM). Control commands for navigating this path are generated using the Pure
Pursuit controller block. A differential drive kinematic motion model simulates the robot motion
based on those commands.

Load the Map and Simulink Model

Load the occupancy map, which defines the map limits and obstacles within the map.
exampleMaps.mat contain multiple maps including simpleMap, which this example uses.

load exampleMaps.mat

Specify a start and end locaiton within the map.

startLoc = [5 5];
goalLoc = [20 20];

Model Overview

Open the Simulink model.

open_system('pathPlanningSimulinkModel.slx')

The model is composed of three primary parts:

• Planning
• Control
• Plant Model

1 Robotics System Toolbox Examples

1-26



Planning

The Planner MATLAB® function block uses the mobileRobotPRM path planner and takes a start
location, goal location, and map as inputs. The blocks outputs an array of waypoints that the robot
follows. The planned waypoints are used downstream by the Pure Pursuit controller block.

Control

Pure Pursuit

The Pure Pursuit controller block generates the linear velocity and angular velocity commands
based on the waypoints and the current pose of the robot.
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Check if Goal is Reached

The Check Distance to Goal subsystem calculates the current distance to the goal and if it is within
a threshold, the simulation stops.

Plant Model
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The Differential Drive Kinematic Model block creates a vehicle model to simulate simplified
vehicle kinematics. The block takes linear and angular velocities as command inputs from the Pure
Pursuit controller block, and outputs the current position and velocity states.

Run the Model

simulation = sim('pathPlanningSimulinkModel.slx');

Visualize The Motion of Robot

After simulating the model, visualize the robot driving the obstacle-free path in the map.

map = binaryOccupancyMap(simpleMap);
robotPose = simulation.Pose;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

% Plot the robot poses at every 10th step.
for k = 1:10:size(xyz, 1) 
    show(map)
    hold on;
    
    % Plot the start location.
    plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))
    text(startLoc(1), startLoc(2), 2, 'Start');
    
    % Plot the goal location.
    plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
    text(goalLoc(1), goalLoc(2), 2, 'Goal');
    
    % Plot the xy-locations.
    plot(robotPose(:, 1), robotPose(:, 2), '-b')
    
    % Plot the robot pose as it traverses the path.
    quat = eul2quat(thetaEuler(k, :), 'xyz');
    plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
        'groundvehicle.stl');
    light;
    drawnow;
    hold off;
end
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Execute Tasks for a Warehouse Robot
This example demonstrates how to execute an obstacle-free path for a mobile robot between three
locations on a given map. The robot is expected to visit the three locations in a warehouse: a charging
station, loading station, and unloading location. The sequence in which these locations are visited is
dictated by a scheduler. The scheduler gives each robot a goal pose to navigate to. The robot plans a
path and uses a Pure Pursuit controller to follow the waypoints based on the current pose of the
robot. The Differential Drive Kinematic Model block models the simplified kinematics, which
takes the linear and angular velocities from the Pure Pursuit Controller. This example builds on top of
the “Plan Path for a Differential Drive Robot in Simulink” on page 1-26 example.

Warehouse Map

A typical warehouse of a sorting or distribution facility has packages to be delivered from work
stations to storage areas. The warehouse may have off-limit areas like offices and in-progress
inventory blocking aisles or walkways. The robots are tasked with picking finished packages as they
arrive at the sorting station and are told a location to store them. The warehouse also has a charging
station for recharging the robots after a certain time.
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This sample warehouse floor-plan can be translated into a binary occupancy map, which indicates all
the safe regions in the warehouse facility.

Load the example map file. logicalMap is a matrix of logical values indicating free space in the
warehouse. Make a binaryOccupancyMap from this matrix.

load warehouseMaps.mat logicalMap
map = binaryOccupancyMap(logicalMap);
show(map)

Assign the xy-locations of the charging station, sorting (loading) station, and the unloading location
near shelves in the warehouse.

chargingStn = [5,5];
loadingStn = [52,15];
unloadingStn = [15,42];
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Show the various locations on the map

hold on;

text(chargingStn(1), chargingStn(2), 1, 'Charging');
plotTransforms([chargingStn, 0], [1 0 0 0])

text(loadingStn(1), loadingStn(2), 1, 'Sorting Station');
plotTransforms([loadingStn, 0], [1 0 0 0])

text(unloadingStn(1), unloadingStn(2), 1, 'Unloading Station');
plotTransforms([unloadingStn, 0], [1 0 0 0])

hold off;

Model Overview

A Simulink® model is provided that models all aspects of the system for scheduling, planning,
controlling, and modelling the robot behavior.

Open the Simulink Model.

open_system('warehouseTasksRobotSimulationModel.slx')
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Planning, Control, and Plant Model

The model uses a planning, control, and plant model similar to the “Plan Path for a Differential Drive
Robot in Simulink” on page 1-26 example. The planner takes the start and goal locations from the
scheduler and plans an obstacle-free path between them based on the given map. The controller uses
a Pure Pursuit controller for generating the linear and angular velocity controls of the robot to
navigation the path. These controls are given to the plant model that models the behavior of a
differential-drive robot.

Robot Scheduler

The Scheduler block assigns start and goal locations to the robot. The current pose of the robot is
used as a starting location and the end location is determined by a sequence of tasks specified inside
the scheduler. The example illustrates the following sequence of tasks for the robot:

1 Starts from the charging location, and goes to the loading location.
2 Pauses as the loading station to load the package and plans a path to the unloading location.
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3 Navigates to the unloading station to unload the package. Replans a path to the charging station.
4 Stops at the charging station.

Simulate The Robot

Run the simulation to see the robot execute the tasks.

simulation = sim('warehouseTasksRobotSimulationModel.slx');
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Visualize Robot Trajectories

A custom visualization tool is given to mimic a distributed camera system and get more detailed
views of the robot trajectory at certain locations in the map. Open the Visualization Helper block
and use the Preset Views drop-down to select different perspectives. The Sample time of the
visualization has no effect on the simulation of the robot.
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See Also

• “Plan Path for a Differential Drive Robot in Simulink” on page 1-26
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• “Control and Simulate Multiple Warehouse Robots” on page 1-40
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Control and Simulate Multiple Warehouse Robots
This example shows how to control and simulate multiple robots working in a warehouse facility or
distribution center. The robots drive around the facility picking up packages and delivering them to
stations for storing or processing. This example builds on top of the “Execute Tasks for a Warehouse
Robot” on page 1-31 example, which drives a single robot around the same facility.

This package-sorting scenario can be modeled in Simulink® using Stateflow charts and Robotics
System Toolbox™ algorithm blocks. A Central Scheduler sends commands to robots to pick up
packages from the loading station and deliver them to a specific unloading station. The Robot
Controller plans the trajectory based on the locations of the loading and unloading stations, and
generates velocity commands for the robot. These commands are fed to the Plant, which contains a
differential-drive robot model for executing the velocity commands and returning ground-truth poses
of the robot. The poses are fed back to the scheduler and controller for tracking the robot status. This
workflow is done for a group of 5 robots, which are all scheduled, tracked, and modeled
simultaneously.

The provided Simulink model, multiRobotExampleModel, models the above described scenario.
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Central Scheduler

The Central Scheduler uses a Stateflow chart to handle package allocation to the robots from the
Package Dispenser. Each robot can carry one package at a time and is instructed to go from the
loading to an unloading station based on the required location for each package. The scheduler also
tracks the status of the packages and robots and updates the Status Dashboard. Based on robot
poses, the scheduler also sends stop commands to one robot when it detects an imminent collision.
This behavior can allow the robots to run local obstacle avoidance if available.

The For Each Robot and Package State subsystem is a For Each Subsystem (Simulink) which
processes an array of buses for tracking the robot and package states as RobotPackageStatus bus
object. This makes it easy to update this model for varying number of robots. For more information
about processing arrays of buses using a For-Each Subsystem, see “Work with Arrays of Buses”
(Simulink).
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Scheduler

The following schematic details the signal values of the Scheduler Stateflow chart.
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Robot Controller

The Robot Controller uses a For Each Subsystem (Simulink) to generate an array of robot
controllers for your 5 robots.

The following schematic details the type of signal values associated with the For Each Robot
Controller.

Each robot controller has the following inputs and outputs.
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The controller takes delivery commands, which contains the package information, and plans a path
for delivering it someone in the warehouse using mobileRobotPRM. The Pure Pursuit block takes
this path and generates velocity commands for visiting each waypoint. Also, the status of the robot
and packages get updated when the robot reaches its goal. Each robot also has its own internal
scheduler that tells them the location of unloading stations based on the package information, and
sends them back to the loading station when they drop off a package.

The robot controller model uses the same model, warehouseTasksRobotSimulationModel, shown
in “Execute Tasks for a Warehouse Robot” on page 1-31.

Plant

The Plant subsystem uses a Differential Drive Kinematic Model block to model the motion of the
robots.
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Model Setup

Begin to setup various variables in MATLAB® for the model.

Defining the Warehouse Environment

A logical type matrix, logicalMap represents the occupancy map of the warehouse. The warehouse
contains obstacles representing walls, shelves, and other processing stations. Loading, unloading,
and charging stations are also given in xy-coordinates.

load multiRobotWarehouseMap.mat logicalMap loadingStation unloadingStations chargingStations
warehouseFig = figure('Name', 'Warehouse Setting', 'Units',"normalized", 'OuterPosition',[0 0 1 1]);
visualizeWarehouse(warehouseFig, logicalMap, chargingStations, unloadingStations, loadingStation);
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Checking occupancy at stations

Ensure that the stations are not occupied in the map.

map = binaryOccupancyMap(logicalMap);
if(any(checkOccupancy(map, [chargingStations; loadingStation; unloadingStations])))
    error("At least one of the station locations is occupied in the map.")
end

Central Scheduler

The Central Scheduler requires the knowledge of the packages that are to be delivered so as to
send the delivery commands to the robot controllers.

Defining Packages

Packages are given as an array of index numbers of the various unloading stations that the packages
are supposed to be delivered to. Because this example has three unloading stations, a valid package
can take a value of 1, 2, or 3.
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load packages.mat packages
packages

packages = 1×11

     3     2     1     2     3     1     1     1     2     3     1

Number of Robots

The number of robots is used to determine the sizes of the various signals in the initialization of the
Scheduler Stateflow chart

numRobots = size(chargingStations, 1); % Each robot has its own charging station;

Collision Detection and Goal-Reached Threshold

The Central Scheduler and the Robot Controller use certain thresholds for collision detection,
collisionThresh, and a goal-reached condition, awayFromGoalThresh.

Collision detection ensures that for any pair of robots within a certain distance-threshold, the robot
with a lower index should be allowed to move while the other robot should stop (zero-velocity
command). The still moving robot should be able to avoid local static obstacles in their path. You
could achieve this with another low-level controller like the Vector Field Histogram (Navigation
Toolbox) block.

The goal-reached condition occurs if the robot is within a distance threshold, awayFromGoalThresh,
from the goal location.

load exampleMultiRobotParams.mat awayFromGoalThresh collisionThresh

Bus Objects

The RobotDeliverCommand and RobotPackageStatus bus objects are used to pass robot-package
allocations between the Central Scheduler and the Robot Controller.

load warehouseRobotBusObjects.mat RobotDeliverCommand RobotPackageStatus

Simulation

Open the Simulink model.

open_system("multiRobotExampleModel.slx")

Run the simulation. You should see the robots drive plan paths and deliver packages.

sim('multiRobotExampleModel');

### Starting serial model reference simulation build
### Successfully updated the model reference simulation target for: robotController

Build Summary

Simulation targets built:

Model            Action                       Rebuild Reason                              
==========================================================================================
robotController  Code generated and compiled  robotController_msf.mexw64 does not exist.  
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1 of 1 models built (0 models already up to date)
Build duration: 0h 2m 30.3s

Metrics and Status Dashboard

For each of the packages, the dashboard in the model shows if the package is "InProgress",
"Unassigned", or "Delivered". Robot Status displays the distance travelled, package location, and a
package ID.
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Extending the Model

This model is setup to handle modifying the number of robots in the warehouse based on availability.
Adding more robots requires defining additional charging stations.

chargingStations(6, :) = [10, 15]; % Charging Station for the additional 6th robot
chargingStations(7, :) = [10, 17];  % Charging Station for the additional 7th robot

You can also add more unloading stations and assign packages to it.

unloadingStations(4, :) = [30, 50];
packages = [packages, 4, 4];

Additional Differential Kinematic Model blocks are also required to match the number of robots.
The exampleHelperReplacePlantSubsystem adds these by updating numRobots.

numRobots = size(chargingStations, 1) % As before, each robot has its own charging station 

numRobots = 7

exampleHelperReplacePlantSubsystem('multiRobotExampleModel/Robots', numRobots);

You can also redefine any existing locations. Modify the loading station location.

loadingStation = [35, 20];

Simulation

After making the modifications, run the simulation again. You should see the updated station
locations and an increased number of robots.

sim('multiRobotExampleModel');

### Starting serial model reference simulation build
### Successfully updated the model reference simulation target for: robotController

Build Summary

Simulation targets built:
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Model            Action                       Rebuild Reason                                  
==============================================================================================
robotController  Code generated and compiled  Global variable unloadingStations has changed.  

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 8.942s

Visualization

The Visualization Helper offers some options for changing the view of the warehouse. Open the
block mask to switch between various Preset Views of different stations. Toggle path visualization or
update robot mesh types. Adjust the Sample time to change the rate of the visualization, which does
not affect the execution of the actual robot simulation.
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Simulate a Mobile Robot in a Warehouse Using Gazebo
This example shows how to simulate a warehouse robot in Gazebo. Gazebo enabled you to simulate a
mobile robot that uses a range sensor, while executing certain tasks in a simulated environment. This
example details how to use a simulator to apply the “Execute Tasks for a Warehouse Robot” on page
1-31 example, where a robot delivers packages in a warehouse scenario. The robot makes use of the
simulated range sensor in Gazebo to detect possible collisions with a dynamic environment and avoid
them.

Prerequisites

• Download a Virtual Machine with ROS and Gazebo to set up a simulated robot.
• Review the “Execute Tasks for a Warehouse Robot” on page 1-31 example for the workflow of path

planning and navigating in a warehouse scenario.
• Review the “Control a Differential Drive Robot in Gazebo with Simulink” on page 1-70 example

for basic steps of collecting sensor data and controlling a robot in Gazebo.

Model Overview

Open the model.

open_system('simulateWarehouseRobotInGazebo.slx')

The model can be divided into the following elements:

• Sense: Read data from sensors in Gazebo.
• Schedule: Assign packages and plan paths for robots to deliver the packages.
• Control: Generate commands to follow the predefined path and avoid obstacles.
• Actuate: Send commands to Gazebo to actuate the robot in the environment.
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Schedule

The robot performs the task of going between the charging station, the loading station, and the
unloading station as guided by the Scheduler.

Sense

The current robot pose, the wheel speeds, and the range sensor readings are read from the simulated
environment in Gazebo. The figure below is the expanded view of the Read From Gazebo Sensors
subsystem.
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Control

The controller generates control commands for following the waypoints using the Pure Pursuit
block. If the range sensor on the robot detects an obstacle within the avoidCollisionDistance
threshold, the robot stops. Also, the robot stops when gets near enough to the goal.
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Actuate

Based on the generated control commands, the Pioneer Wheel Control subsystem generates a
torque value for each wheel.The torque is applied as an ApplyJointTorque command.
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Setup

Warehouse Facility

Load the example map file, map, which is a matrix of logical values indicating occupied space in the
warehouse. Invert this matrix to indicate free space, and make a binaryOccupancyMap object.
Specify a resolution of 100 cells per meter.

The map is based off of the warehouseExtensions.world file, which was made using the Building
Editor on the same scaling factor as mentioned below. A .png file for the map can be made using the
collision_map_creator_plugin plugin to generate the map matrix. The details on how to install
the plugin can be found at Collision Map Creator Plugin.

mapScalingFactor = 100;
load gazeboWarehouseMap.mat map
logicalMap = ~map;
map = binaryOccupancyMap(logicalMap,mapScalingFactor);
show(map)

Assign the xy-locations of the charging station, sorting station, and the unloading location near
shelves in the warehouse. The values chosen are based on the simlated world in Gazebo.

chargingStn = [12,5];
loadingStn = [24,5];
unloadingStn = [15,24];

Show the various locations on the map.

hold on;

text(chargingStn(1), chargingStn(2), 1, 'Charging');
plotTransforms([chargingStn, 0], [1 0 0 0])

text(loadingStn(1), loadingStn(2), 1, 'Sorting Station');
plotTransforms([loadingStn, 0], [1 0 0 0])

text(unloadingStn(1), unloadingStn(2), 1, 'Unloading Station');
plotTransforms([unloadingStn, 0], [1 0 0 0])

hold off;
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Range Sensor

The Read Lidar Scan block in the Sensing on page 1-0  section is used to read the range values
from the simulated range sensor. The warehouseExtensions.world file contains the details of the
various models and actors (warehouse workers) in the scene. Because <actor> tags are static links
with only visual meshes, the sensor type of the range sensor is gpu_ray.

Additionally, the range sensor uses 640 range, but the default is 128. This requires modification of the
buses used in the in the Read Lidar Scan block. Load the
exampleHelperWarehouseRobotWithGazeboBuses.mat file to get a modified bus with
Gazebo_SL_Bus_gazebo_msgs_LaserScan.range set to 640. The modified buses were saved to
a .mat file using the Bus Editor.

load exampleHelperWarehouseRobotWithGazeboBuses.mat

Collision Avoidance

The actors in the world are walking a predefined trajectory. The robot makes use of a range sensor to
check for obstacles within a range of 2.0 m (avoidCollisionDistance) with range angles from [-
pi/10, pi/10] Upon a non-zero reading within that range and view, the robot stops and only
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resumes after the range is clear. The "Stop Robot On Sensing Obstacles" function block incorporates
this logic.

While running the simulation, the Stop lamp turns green when the robot senses that it is good to
proceed. If it has stopped the lamp turns red.

avoidCollisionDistance = 2; 

Simulate

To simulate the scenario, set up the connection to Gazebo.

First, run the Gazebo Simulator. In the virtual machine, click the Gazebo Warehouse Robot icon. If
the Gazebo simulator fails to open, you may need to reinstall the plugin. See Install Gazebo Plugin
Manually in “Perform Co-Simulation between Simulink and Gazebo” on page 1-431.

In Simulink, open the Gazebo Pacer block and click Configure Gazebo network and simulation
settings. Specify the Network Address as Custom, the Hostname/IP Address for your Gazebo
simulation, and a Port of 14581, which is the default port for Gazebo. The desktop of the VM displays
the IP address.

For more information about connecting to Gazebo to enable co-simulation, see “Perform Co-
Simulation between Simulink and Gazebo” on page 1-431.

Click the Initialize Model button at the top of the model to intialize all the variables declared above.

Run the simulation. The robot drives around the environment and stops whenever a worker gets
within the defined threshold.
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Track a Car-Like Robot Using Particle Filter
Particle filter is a sampling-based recursive Bayesian estimation algorithm, which is implemented in
the stateEstimatorPF object. In this example, a remote-controlled car-like robot is being tracked
in the outdoor environment. The robot pose measurement is provided by an on-board GPS, which is
noisy. There are known motion commands sent to the robot, but the robot will not execute the exact
commanded motion due to mechanical slack or model inaccuracy. This example will show how to use 
stateEstimatorPF to reduce the effects of noise in the measurement data and get a more accurate
estimation of the pose of the robot. The kinematic model of a car-like robot is described by the
following non-linear system. The particle filter is ideally suited for estimating the state of such kind of
systems, as it can deal with the inherent non-linearities.

ẋ = vcos(θ)
ẏ = vsin(θ)

θ̇ = v
L tanϕ

ϕ̇ = ω

Scenario: The car-like robot drives and changes its velocity and steering angle continuously. The
pose of the robot is measured by some noisy external system, e.g. a GPS or a Vicon system. Along the
path it will drive through a roofed area where no measurement can be made.

Input:

• The noisy measurement on robot's partial pose (x, y, θ). Note this is not a full state measurement.
No measurement is available on the front wheel orientation (ϕ) as well as all the velocities (ẋ, ẏ, θ̇,
ϕ̇).

 Track a Car-Like Robot Using Particle Filter

1-61



• The linear and angular velocity command sent to the robot (vc, ωc). Note there will be some
difference between the commanded motion and the actual motion of the robot.

Goal: Estimate the partial pose (x, y, θ) of the car-like robot. Note again that the wheel orientation
(ϕ) is not included in the estimation. From the observer's perspective, the full state of the car is
only [ x, y, θ, ẋ, ẏ, θ̇ ].

Approach: Use stateEstimatorPF to process the two noisy inputs (neither of the inputs is reliable
by itself) and make best estimation of current (partial) pose.

• At the predict stage, we update the states of the particles with a simplified, unicycle-like robot
model, as shown below. Note that the system model used for state estimation is not an exact
representation of the actual system. This is acceptable, as long as the model difference is well-
captured in the system noise (as represented by the particle swarm). For more details, see 
predict.

ẋ = vcos(θ)
ẏ = vsin(θ)
θ̇ = ω

• At the correct stage, the importance weight (likelihood) of a particle is determined by its error
norm from current measurement ( (Δx)2 + (Δy)2 + (Δθ)2), as we only have measurement on these
three components. For more details, see correct.

Initialize a Car-like Robot

rng('default'); % for repeatable result
dt = 0.05; % time step
initialPose = [0  0  0  0]';
carbot = ExampleHelperCarBot(initialPose, dt);
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Set up the Particle Filter

This section configures the particle filter using 5000 particles. Initially all particles are randomly
picked from a normal distribution with mean at initial state and unit covariance. Each particle
contains 6 state variables (x, y, θ, ẋ, ẏ, θ̇). Note that the third variable is marked as Circular since it is
the car orientation. It is also very important to specify two callback functions StateTransitionFcn
and MeasurementLikelihoodFcn. These two functions directly determine the performance of the
particle filter. The details of these two functions can be found the in the last two sections of this
example.

pf = stateEstimatorPF;

initialize(pf, 5000, [initialPose(1:3)', 0, 0, 0], eye(6), 'CircularVariables',[0 0 1 0 0 0]);
pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

% StateTransitionFcn defines how particles evolve without measurement
pf.StateTransitionFcn = @exampleHelperCarBotStateTransition;

% MeasurementLikelihoodFcn defines how measurement affect the our estimation
pf.MeasurementLikelihoodFcn = @exampleHelperCarBotMeasurementLikelihood;

% Last best estimation for x, y and theta
lastBestGuess = [0 0 0];

Main Loop

Note in this example, the commanded linear and angular velocities to the robot are arbitrarily-picked
time-dependent functions. Also, note the fixed-rate timing of the loop is realized through 
rateControl.

Run loop at 20 Hz for 20 seconds using fixed-rate support.

r = rateControl(1/dt);

Reset the fixed-rate object to restart the timer. Reset the timer right before running the time-
dependent code.

reset(r);

simulationTime = 0; 

while simulationTime < 20 % if time is not up

    % Generate motion command that is to be sent to the robot
    % NOTE there will be some discrepancy between the commanded motion and the
    % motion actually executed by the robot. 
    uCmd(1) = 0.7*abs(sin(simulationTime)) + 0.1;  % linear velocity
    uCmd(2) = 0.08*cos(simulationTime);            % angular velocity
    
    drive(carbot, uCmd);
        
    % Predict the carbot pose based on the motion model
    [statePred, covPred] = predict(pf, dt, uCmd);

    % Get GPS reading
    measurement = exampleHelperCarBotGetGPSReading(carbot);
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    % If measurement is available, then call correct, otherwise just use
    % predicted result
    if ~isempty(measurement)
        [stateCorrected, covCorrected] = correct(pf, measurement');
    else
        stateCorrected = statePred;
        covCorrected = covPred;
    end

    lastBestGuess = stateCorrected(1:3);

    % Update plot
    if ~isempty(get(groot,'CurrentFigure')) % if figure is not prematurely killed
        updatePlot(carbot, pf, lastBestGuess, simulationTime);
    else
        break
    end

    waitfor(r);
    
    % Update simulation time
    simulationTime = simulationTime + dt;
end

Details of the Result Figures

The three figures show the tracking performance of the particle filter.

• In the first figure, the particle filter is tracking the car well as it drives away from the initial pose.
• In the second figure, the robot drives into the roofed area, where no measurement can be made,

and the particles only evolve based on prediction model (marked with orange color). You can see
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the particles gradually form a horseshoe-like front, and the estimated pose gradually deviates
from the actual one.

• In the third figure, the robot has driven out of the roofed area. With new measurements, the
estimated pose gradually converges back to the actual pose.

State Transition Function

The sampling-based state transition function evolves the particles based on a prescribed motion
model so that the particles will form a representation of the proposal distribution. Below is an
example of a state transition function based on the velocity motion model of a unicycle-like robot. For
more details about this motion model, please see Chapter 5 in [1]. Decrease sd1, sd2 and sd3 to see
how the tracking performance deteriorates. Here sd1 represents the uncertainty in the linear
velocity, sd2 represents the uncertainty in the angular velocity. sd3 is an additional perturbation on
the orientation.

   function predictParticles = exampleHelperCarBotStateTransition(pf, prevParticles, dT, u)

       thetas = prevParticles(:,3);

       w = u(2);
       v = u(1);

       l = length(prevParticles);

       % Generate velocity samples
       sd1 = 0.3;
       sd2 = 1.5;
       sd3 = 0.02;
       vh = v + (sd1)^2*randn(l,1);  
       wh = w + (sd2)^2*randn(l,1); 
       gamma = (sd3)^2*randn(l,1); 

       % Add a small number to prevent div/0 error
       wh(abs(wh)<1e-19) = 1e-19;

       % Convert velocity samples to pose samples
       predictParticles(:,1) = prevParticles(:,1) - (vh./wh).*sin(thetas) + (vh./wh).*sin(thetas + wh*dT);
       predictParticles(:,2) = prevParticles(:,2) + (vh./wh).*cos(thetas) - (vh./wh).*cos(thetas + wh*dT);
       predictParticles(:,3) = prevParticles(:,3) + wh*dT + gamma*dT;
       predictParticles(:,4) = (- (vh./wh).*sin(thetas) + (vh./wh).*sin(thetas + wh*dT))/dT;
       predictParticles(:,5) = ( (vh./wh).*cos(thetas) - (vh./wh).*cos(thetas + wh*dT))/dT;
       predictParticles(:,6) = wh + gamma;

   end

Measurement Likelihood Function

The measurement likelihood function computes the likelihood for each predicted particle based on
the error norm between particle and the measurement. The importance weight for each particle will
be assigned based on the computed likelihood. In this particular example, predictParticles is a N
x 6 matrix (N is the number of particles), and measurement is a 1 x 3 vector.

   function  likelihood = exampleHelperCarBotMeasurementLikelihood(pf, predictParticles, measurement)

       % The measurement contains all state variables
       predictMeasurement = predictParticles;

       % Calculate observed error between predicted and actual measurement
       % NOTE in this example, we don't have full state observation, but only
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       % the measurement of current pose, therefore the measurementErrorNorm
       % is only based on the pose error.
       measurementError = bsxfun(@minus, predictMeasurement(:,1:3), measurement);
       measurementErrorNorm = sqrt(sum(measurementError.^2, 2));

       % Normal-distributed noise of measurement
       % Assuming measurements on all three pose components have the same error distribution 
       measurementNoise = eye(3);

       % Convert error norms into likelihood measure. 
       % Evaluate the PDF of the multivariate normal distribution 
       likelihood = 1/sqrt((2*pi).^3 * det(measurementNoise)) * exp(-0.5 * measurementErrorNorm);

   end

Reference

[1] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, 2006
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Simulate Different Kinematic Models for Mobile Robots
This example shows how to model different robot kinematics models in an environment and compare
them.

Define Mobile Robots with Kinematic Constraints

There are a number of ways to model the kinematics of mobile robots. All dictate how the wheel
velocities are related to the robot state: [x y theta], as xy-coordinates and a robot heading,
theta, in radians.

Unicycle Kinematic Model

The simplest way to represent mobile robot vehicle kinematics is with a unicycle model, which has a
wheel speed set by a rotation about a central axle, and can pivot about its z-axis. Both the differential-
drive and bicycle kinematic models reduce down to unicycle kinematics when inputs are provided as
vehicle speed and vehicle heading rate and other constraints are not considered.

unicycle = unicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate");

Differential-Drive Kinematic Model

The differential drive model uses a rear driving axle to control both vehicle speed and head rate. The
wheels on the driving axle can spin in both directions. Since most mobile robots have some interface
to the low-level wheel commands, this model will again use vehicle speed and heading rate as input to
simplify the vehicle control.

diffDrive = differentialDriveKinematics("VehicleInputs","VehicleSpeedHeadingRate");

To differentiate the behavior from the unicycle model, add a wheel speed velocity constraint to the
differential-drive kinematic model

diffDrive.WheelSpeedRange = [-10 10]*2*pi;

Bicycle Kinematic Model

The bicycle model treats the robot as a car-like model with two axles: a rear driving axle, and a front
axle that turns about the z-axis. The bicycle model works under the assumption that wheels on each
axle can be modeled as a single, centered wheel, and that the front wheel heading can be directly set,
like a bicycle.

bicycle = bicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate","MaxSteeringAngle",pi/8);

Other Models

The Ackermann kinematic model is a modified car-like model that assumes Ackermann steering. In
most car-like vehicles, the front wheels do not turn about the same axis, but instead turn on slightly
different axes to ensure that they ride on concentric circles about the center of the vehicle's turn.
This difference in turning angle is called Ackermann steering, and is typically enforced by a
mechanism in actual vehicles. From a vehicle and wheel kinematics standpoint, it can be enforced by
treating the steering angle as a rate input.

carLike = ackermannKinematics;
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Set up Simulation Parameters

These mobile robots will follow a set of waypoints that is designed to show some differences caused
by differing kinematics.

waypoints = [0 0; 0 10; 10 10; 5 10; 11 9; 4 -5];
% Define the total time and the sample rate
sampleTime = 0.05;               % Sample time [s]
tVec = 0:sampleTime:20;          % Time array

initPose = [waypoints(1,:)'; 0]; % Initial pose (x y theta)

Create a Vehicle Controller

The vehicles follow a set of waypoints using a Pure Pursuit controller. Given a set of waypoints, the
robot current state, and some other parameters, the controller outputs vehicle speed and heading
rate.

% Define a controller. Each robot requires its own controller
controller1 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller2 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller3 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);

Simulate the Models Using an ODE Solver

The models are simulated using the derivative function to update the state. This example uses an
ordinary differential equation (ODE) solver to generate a solution. Another way would be to update
the state using a loop, as shown in “Path Following for a Differential Drive Robot” on page 1-10.

Since the ODE solver requires all outputs to be provided as a single output, the pure pursuit
controller must be wrapped in a function that outputs the linear velocity and heading angular velocity
as a single output. An example helper, exampleHelperMobileRobotController, is used for that
purpose. The example helper also ensures that the robot stops when it is within a specified radius of
the goal.

goalPoints = waypoints(end,:)';
goalRadius = 1;

ode45 is called once for each type of model. The derivative function computes the state outputs with
initial state set by initPose. Each derivative accepts the corresponding kinematic model object, the
current robot pose, and the output of the controller at that pose.

% Compute trajectories for each kinematic model under motion control
[tUnicycle,unicyclePose] = ode45(@(t,y)derivative(unicycle,y,exampleHelperMobileRobotController(controller1,y,goalPoints,goalRadius)),tVec,initPose);
[tBicycle,bicyclePose] = ode45(@(t,y)derivative(bicycle,y,exampleHelperMobileRobotController(controller2,y,goalPoints,goalRadius)),tVec,initPose);
[tDiffDrive,diffDrivePose] = ode45(@(t,y)derivative(diffDrive,y,exampleHelperMobileRobotController(controller3,y,goalPoints,goalRadius)),tVec,initPose);

Plot Results

The results of the ODE solver can be easily viewed on a single plot using plotTransforms to
visualize the results of all trajectories at once.

The pose outputs must first be converted to indexed matrices of translations and quaternions.

unicycleTranslations = [unicyclePose(:,1:2) zeros(length(unicyclePose),1)];
unicycleRot = axang2quat([repmat([0 0 1],length(unicyclePose),1) unicyclePose(:,3)]);
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bicycleTranslations = [bicyclePose(:,1:2) zeros(length(bicyclePose),1)];
bicycleRot = axang2quat([repmat([0 0 1],length(bicyclePose),1) bicyclePose(:,3)]);

diffDriveTranslations = [diffDrivePose(:,1:2) zeros(length(diffDrivePose),1)];
diffDriveRot = axang2quat([repmat([0 0 1],length(diffDrivePose),1) diffDrivePose(:,3)]);

Next, the set of all transforms can be plotted and viewed from the top. The paths of the unicycle,
bicycle, and differential-drive robots are red, blue, and green, respectively. To simplify the plot, only
show every tenth output.

figure
plot(waypoints(:,1),waypoints(:,2),"kx-","MarkerSize",20);
hold all
plotTransforms(unicycleTranslations(1:10:end,:),unicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","r");
plotTransforms(bicycleTranslations(1:10:end,:),bicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","b");
plotTransforms(diffDriveTranslations(1:10:end,:),diffDriveRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","g");
view(0,90)
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Control a Differential Drive Robot in Gazebo with Simulink
This example shows how to control a differential drive robot in Gazebo co-simulation using Simulink.
The robot follows a set of waypoints by reading the pose and wheel encoder positions and generates
torque-control commands to drive it.

Run the VM

Follow the instructions in “Perform Co-Simulation between Simulink and Gazebo” on page 1-431 to
download the virtual machine (VM) with Gazebo.

Gazebo World

This example uses a world given in the VM, differentialDriveRobot.world, as a simple ground
plane with default physics settings. The world uses a Pioneer robot with the default controllers
removed, so that the built-in controllers do not compete with torques provided from Simulink. The
Pioneer robot is available in default Gazebo installs. The Gazebo plugin references the plugin
required for the connection to Simulink, as detailed in “Perform Co-Simulation between Simulink and
Gazebo” on page 1-431.

Double-click the Gazebo Differential Drive Robot icon.

Alternative, run these commands in the terminal:

cd /home/user/src/GazeboPlugin/export 
export SVGA_VGPU10=0 
gazebo ../world/differentialDriveRobot.world

If the Gazebo simulator fails to open, you may need to reinstall the plugin. See Install Gazebo
Plugin Manually in “Perform Co-Simulation between Simulink and Gazebo” on page 1-431.
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Model Overview

Open the model:

open_system('GazeboDifferentialDriveControl') 

The model has four sections:

• Gazebo Pacer
• Read Sensor Data
• Control Mobile Robot
• Send Actuation Data to Gazebo

Gazebo Pacer

This section establishes the connection to Gazebo. Double-click the Gazebo Pacer block to open its
parameters, and then click the Configure Gazebo network and simulation settings link. This will
open a dialog.

Specify the IP Address for your VM. By default, Gazebo connects on the 14581 port. Click the Test
button to verify the connection to Gazebo.
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If the test is not successful, make sure to check the instructions in “Perform Co-Simulation between
Simulink and Gazebo” on page 1-431 and ensure that Gazebo is properly configured and the
associated world is up and running.

Gazebo Sensor Outputs

The sensor outputs read sensor data from Gazebo and passes it to the appropriate Simulink blocks.
An XY graph plots the current robot position, and pose data is saved to the simulation output.
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The Read Gazebo Sensors subsystem extracts the robot pose and wheel sensor data. The pose data
are the xy-coordinates and a four-element quaternion for orientation. The wheel speeds are computed
based on rate of change of the wheel positions as they rotate.

Mobile Robot Control

The Mobile Robot Control section accepts a set of target waypoints, current pose, and the current
wheel speeds, and outputs the wheel torques needed to have the robot follow a path that pursues the
waypoints.
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There are three main components.

The Pure Pursuit block is a controller that specifies the vehicle speed and heading angular velocity
of the vehicle needed to follow the waypoints at a fixed speed, given the current pose.

The Set Wheel Speed MATLAB Function block converts vehicle speed and heading angular velocity
to left and right wheel speed, using the kinematics of a differential drive robot:

ϕ̇L = 1
r v− ωd

2

ϕ̇R = 1
r v + ωd

2

ϕ̇L and ϕ̇R are the left and right wheel speeds, v is the vehicle speed, ω is the vehicle heading angular
velocity, d is the track width, and r is the wheel radius. Additionally, this MATLAB® Function includes
code to throttle the wheel speed. Since the Pure Pursuit block uses a fixed speed throughout, inside
the MATLAB Function block, there are two if-statements. The first slows the velocity at a rate
proportional to the distance to the goal when the robot is within a certain distance threshold. The
second if-statement stops the robot when it is within a tight threshold. This helps the robot to come to
a gentle stop.

Finally, the Pioneer Wheel Control subsystem converts the desired wheel speeds to torques using a
proportional controller.

Actuator Torque Commands

The last section of the model takes the torque commands produced by the controller and sends it to
Simulink using blocks from the Gazebo Co-Simulation Library.
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Inside each of the subsystems in this block, a Bus Assignment block is used to assign the joint
torque to the correct joint.

For example, inside the Left Wheel Gazebo Torque Command subsystem, shown above, a Gazebo
Blank Message with the ApplyJointTorque command type is used to specify the bus type. The
model and joint name are provided by the Gazebo Select Entity block, which is linked to the joint
associated with the left wheel in the Gazebo world, left_wheel_hinge. The torque is applied for
the entire step time, 0.01 seconds, specified in nanoseconds since these inputs must be provided as
integers. The output of the bus is passed to a Gazebo Apply Command block.
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Simulate the robot

To run the model, initialize the waypoints and set the sample time:

waypoints = [0 0; 4 2; 3 7; -3 6];
sampleTime = 0.01;

Click Play button or use the sim command to run the model. During execution, the robot should
move in Gazebo, and an XY Plot updates the pose observed in Simulink.
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The figures plot the set of waypoints and the final executed path of the robot.
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Avoid Obstacles Using Reinforcement Learning for Mobile
Robots

This example uses Deep Deterministic Policy Gradient (DDPG) based reinforcement learning to
develop a strategy for a mobile robot to avoid obstacles. For a brief summary of the DDPG algorithm,
see “Deep Deterministic Policy Gradient Agents” (Reinforcement Learning Toolbox).

This example scenario trains a mobile robot to avoid obstacles given range sensor readings that
detect obstacles in the map. The objective of the reinforcement learning algorithm is to learn what
controls (linear and angular velocity), the robot should use to avoid colliding into obstacles. This
example uses an occupancy map of a known environment to generate range sensor readings, detect
obstacles, and check collisions the robot may make. The range sensor readings are the observations
for the DDPG agent, and the linear and angular velocity controls are the action.

Load Map

Load a map matrix, simpleMap, that represents the environment for the robot.

load exampleMaps simpleMap 
load exampleHelperOfficeAreaMap office_area_map
mapMatrix = simpleMap;
mapScale = 1;

Range Sensor Parameters

Next, set up a rangeSensor object which simulates a noisy range sensor. The range sensor readings
are considered observations by the agent. Define the angular positions of the range readings, the max
range, and the noise parameters.

scanAngles = [-3*pi/8:pi/8:3*pi/8];
maxRange = 12;
lidarNoiseVariance = 0.1^2;
lidarNoiseSeeds = randi(intmax,size(scanAngles));

Robot Parameters

The action of the agent is a two-dimensional vector a = [v, ω] where v and ω are the linear and
angular velocities of our robot. The DDPG agent uses normalized inputs for both the angular and
linear velocities, meaning the actions of the agent are a scalar between -1 and 1, which is multiplied
by the maxLinSpeed and maxAngSpeed parameters to get the actual control. Specify this maximum
linear and angular velocity.

Also, specify the initial position of the robot as [x y theta].

% Max speed parameters
maxLinSpeed = 0.3;
maxAngSpeed = 0.3;

% Initial pose of the robot
initX = 17;
initY = 15;
initTheta = pi/2;
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Show Map and Robot Positions

To visualize the actions of the robot, create a figure. Start by showing the occupancy map and plot
the initial position of the robot.

fig = figure("Name","simpleMap");
set(fig, "Visible","on");
ax = axes(fig);

show(binaryOccupancyMap(mapMatrix),"Parent",ax);
hold on
plotTransforms([initX,initY,0],eul2quat([initTheta,0,0]),"MeshFilePath","groundvehicle.stl","View","2D");
light;
hold off

Environment Interface

Create an environment model that takes the action, and gives the observation and reward signals.
Specify the provided example model name, exampleHelperAvoidObstaclesMobileRobot, the
simulation time parameters, and the agent block name.

mdl = "exampleHelperAvoidObstaclesMobileRobot";
Tfinal = 100;
sampleTime = 0.1;

agentBlk = mdl + "/Agent";

Open the model.
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open_system(mdl)

The model contains the Environment and Agent blocks. The Agent block is not defined yet.

Inside the Environment Subsystem block, you should see a model for simulating the robot and
sensor data. The subsystem takes in the action, generates the observation signal based on the range
sensor readings, and calculates the reward based on the distance from obstacles, and the effort of the
action commands.

open_system(mdl + "/Environment")
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Define observation parameters, obsInfo, using the rlNumericSpec object and giving the lower and
upper limit for the range readings with enough elements for each angular position in the range
sensor.

obsInfo = rlNumericSpec([numel(scanAngles) 1],...
    "LowerLimit",zeros(numel(scanAngles),1),...
    "UpperLimit",ones(numel(scanAngles),1)*maxRange);
numObservations = obsInfo.Dimension(1);

Define action parameters, actInfo. The action is the control command vector, a = [v, ω], normalized
to [ − 1, 1].

numActions = 2;
actInfo = rlNumericSpec([numActions 1],...
    "LowerLimit",-1,...
    "UpperLimit",1);

Build the environment interface object using rlSimulinkEnv (Reinforcement Learning Toolbox).
Specify the model, agent block name, observation parameters, and action parameters. Set the reset
function for the simulation using exampleHelperRLAvoidObstaclesResetFcn. This function
restarts the simulation by placing the robot in a new random location to begin avoiding obstacles.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);
env.ResetFcn = @(in)exampleHelperRLAvoidObstaclesResetFcn(in,scanAngles,maxRange,mapMatrix);
env.UseFastRestart = "Off";

For another example that sets up a Simulink® environment for training, see “Create Simulink
Environment and Train Agent” (Reinforcement Learning Toolbox).

DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
observation and action, and one output. For more information on creating a deep neural network
value function representation, see “Create Policies and Value Functions” (Reinforcement Learning
Toolbox).

statePath = [
    featureInputLayer(numObservations, "Normalization","none","Name","State")
    fullyConnectedLayer(50,"Name","CriticStateFC1")
    reluLayer("Name","CriticRelu1")
    fullyConnectedLayer(25,"Name","CriticStateFC2")];
actionPath = [
    featureInputLayer(numActions,"Normalization","none","Name","Action")
    fullyConnectedLayer(25,"Name","CriticActionFC1")];
commonPath = [
    additionLayer(2,"Name","add")
    reluLayer("Name","CriticCommonRelu")
    fullyConnectedLayer(1,"Name","CriticOutput")];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,"CriticStateFC2","add/in1");
criticNetwork = connectLayers(criticNetwork,"CriticActionFC1","add/in2");
criticNetwork = dlnetwork(criticNetwork);
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Next, specify options for the critic optimizer using rlOptimizerOptions.

Finally, create the critic representation using the specified deep neural network and options. You
must also specify the action and observation specifications for the critic, which you obtain from the
environment interface. For more information, see rlQValueFunction (Reinforcement Learning
Toolbox).

criticOptions = rlOptimizerOptions("LearnRate",1e-3,"L2RegularizationFactor",1e-4,"GradientThreshold",1);
critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,"ObservationInputNames","State","ActionInputNames","Action");

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Finally, construct the actor in a similar manner as the critic. For more information, see
rlContinuousDeterministicActor (Reinforcement Learning Toolbox).

actorNetwork = [
    featureInputLayer(numObservations,"Normalization","none","Name","State")
    fullyConnectedLayer(50,"Name","actorFC1")
    reluLayer("Name","actorReLU1")
    fullyConnectedLayer(50, "Name","actorFC2")
    reluLayer("Name","actorReLU2")
    fullyConnectedLayer(2, "Name","actorFC3")
    tanhLayer("Name","Action")];
actorNetwork = dlnetwork(actorNetwork);

actorOptions = rlOptimizerOptions("LearnRate",1e-4,"L2RegularizationFactor",1e-4,"GradientThreshold",1);
actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

Create DDPG agent object

Specify the agent options.

agentOpts = rlDDPGAgentOptions(...
    "SampleTime",sampleTime,...
    "ActorOptimizerOptions",actorOptions,...
    "CriticOptimizerOptions",criticOptions,...
    "DiscountFactor",0.995, ...
    "MiniBatchSize",128, ...
    "ExperienceBufferLength",1e6); 

agentOpts.NoiseOptions.Variance = 0.1;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Create the rlDDPGAgent object. The obstacleAvoidanceAgent variable is used in the model for
the Agent block.

obstacleAvoidanceAgent = rlDDPGAgent(actor,critic,agentOpts);
open_system(mdl + "/Agent")
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Reward

The reward function for the agent is modeled as shown.
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The agent is rewarded to avoid the nearest obstacle, which minimizes the worst-case scenario.
Additionally, the agent is given a positive reward for higher linear speeds, and is given a negative
reward for higher angular speeds. This rewarding strategy discourages the agent's behavior of going
in circles. Tuning your rewards is key to properly training an agent, so your rewards vary depending
on your application.

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Train for at most 10000 episodes, with each episode lasting at most maxSteps time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

enable the command line display (set the Verbose option to true).
• Stop training when the agent receives an average cumulative reward greater than 400 over fifty

consecutive episodes.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

maxEpisodes = 10000;
maxSteps = ceil(Tfinal/sampleTime);
trainOpts = rlTrainingOptions(...
    "MaxEpisodes",maxEpisodes, ...
    "MaxStepsPerEpisode",maxSteps, ...
    "ScoreAveragingWindowLength",50, ...
    "StopTrainingCriteria","AverageReward", ...
    "StopTrainingValue",400, ...
    "Verbose", true, ...
    "Plots","training-progress");

Train the agent using the train (Reinforcement Learning Toolbox) function. Training is a
computationally-intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false; % Toggle this to true for training. 

if doTraining
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    % Train the agent.
    trainingStats = train(obstacleAvoidanceAgent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load exampleHelperAvoidObstaclesAgent obstacleAvoidanceAgent
end

The Reinforcement Learning Episode Manager can be used to track episode-wise training
progress. As the episode number increases, you want to see an increase in the reward value.

Simulate

Use the trained agent to simulate the robot driving in the map and avoiding obstacles.

out = sim("exampleHelperAvoidObstaclesMobileRobot.slx");

Visualize

To visualize the simulation of the robot driving around the environment with range sensor readings,
use the helper, exampleHelperAvoidObstaclesPosePlot.

for i = 1:5:size(out.range,3)
    u = out.pose(i,:);
    r = out.range(:,:,i);
    exampleHelperAvoidObstaclesPosePlot(u,mapMatrix,mapScale,r,scanAngles,ax);
end
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Extensibility

You can now use this agent to simulate driving in a different map. Another map generated from lidar
scans of an office environment is used with the same trained model. This map represents a more
realistic scenario to apply the trained model after training.

Change the map

mapMatrix = office_area_map.occupancyMatrix > 0.5;
mapScale = 10;
initX = 20;
initY = 30;
initTheta = 0;
fig = figure("Name","office_area_map");
set(fig,"Visible","on");
ax = axes(fig);
show(binaryOccupancyMap(mapMatrix,mapScale),"Parent",ax);
hold on
plotTransforms([initX,initY,0],eul2quat([initTheta, 0, 0]),"MeshFilePath","groundvehicle.stl","View","2D");
light;
hold off
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Simulate

out = sim("exampleHelperAvoidObstaclesMobileRobot.slx");

Visualize

for i = 1:5:size(out.range,3)
    u = out.pose(i,:);
    r = out.range(:,:,i);
    exampleHelperAvoidObstaclesPosePlot(u,mapMatrix,mapScale,r,scanAngles,ax);
end
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A* Path Planning and Obstacle Avoidance in a Warehouse
This example is an extension to the “Simulate a Mobile Robot in a Warehouse Using Gazebo” on page
1-53 example. The example shows to change the PRM path planner with an A* planner, and add a
vector field histogram (VFH) algorithm to avoid obstacles.

Prerequisites

• Review the “Simulate a Mobile Robot in a Warehouse Using Gazebo” on page 1-53 example to
setup the sensing and actuation elements. This example goes over how to download and use a
virtual machine (VM) to setup a simulated robot.

• Review the “Execute Tasks for a Warehouse Robot” on page 1-31 example for the workflow of path
planning and navigating in a warehouse scenario.

Model Overview

There are two major changes to this model from the “Execute Tasks for a Warehouse Robot” on page
1-31 example. The goal is to replace the path planner algorithm used and add a controller that avoids
obstacles in the environment.

The Planner MATLAB® Function Block now uses the plannerAStarGrid (Navigation Toolbox)
object to run the A* path planning algorithm.

The Obstacle Avoidance subsystem now uses a Vector Field Histogram block as part of the
controller. The rangeReadings function block outputs the ranges and angles when the data received
is not empty. The VFH block then generates a steering direction based on obstacles within the scan
range. For close obstacles, the robot should turn to drive around them. Tune the VFH parameters for
different obstacle avoidance performance.

open_system("aStarPathPlanningAndObstacleAvoidanceInWarehouse.slx");
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Setup

Warehouse Facility

Load the example map file, map, which is a matrix of logical values indicating occupied space in the
warehouse. Invert this matrix to indicate free space, and create a binaryOccupancyMap object.
Specify a resolution of 100 cells per meter.

The map is based off of the obstacleAvoidanceWorld.world, which is loaded in the VM. A PNG-
file was generated to use as the map matrix with the collision_map_creator_plugin plugin. For
more information, see Collision Map Creator Plugin.

close
figure("Name","Warehouse Map","Visible","on")
load exampleHelperWarehouseRobotWithGazeboBuses.mat
load helperPlanningAndObstacleAvoidanceWarehouseMap.mat map
logicalMap = map.getOccupancy;
mapScalingFactor = 100;
show(map)

Assign the xy-locations of the charging station, sorting station, and the unloading location near
shelves in the warehouse. The values chosen are based on the simlated world in Gazebo.
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chargingStn = [2, 13];
loadingStn = [15, 5];
unloadingStn = [15, 15];

Show the various locations on the map.

hold on;
localOrigin = map.LocalOriginInWorld;
localTform = trvec2tform([localOrigin 0]);
text(chargingStn(1), chargingStn(2),1,'Charging');
plotTransforms([chargingStn, 0],[1 0 0 0])

text(loadingStn(1), loadingStn(2),1,'Loading Station');
plotTransforms([loadingStn, 0], [1 0 0 0])

text(unloadingStn(1), unloadingStn(2),1,'Unloading Station');
plotTransforms([unloadingStn, 0], [1 0 0 0])

hold off;

Simulate

To simulate the scenario, set up the connection to Gazebo.

First, run the Gazebo Simulator. In the virtual machine, click the Gazebo Warehouse Robot with
Obstacles icon. If the Gazebo simulator fails to open, you may need to reinstall the plugin. See
Install Gazebo Plugin Manually in “Perform Co-Simulation between Simulink and Gazebo” on page
1-431.
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In Simulink, open the Gazebo Pacer block and click Configure Gazebo network and simulation
settings. Specify the Network Address as Custom, the Hostname/IP Address for your Gazebo
simulation, and a Port of 14581, which is the default port for Gazebo. The desktop of the VM displays
the IP address.

For more information about connecting to Gazebo to enable co-simulation, see “Perform Co-
Simulation between Simulink and Gazebo” on page 1-431.

Click the Initialize Model button at the top of the model to intialize all the variables declared above.

Run the simulation. The robot drives around the environment and avoids unexpected obstacles.

sim("aStarPathPlanningAndObstacleAvoidanceInWarehouse.slx");
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Notice that there are a two cylindrical obstacles which are not present on the occupancy map. The
robot still avoids them when detected using the VFH algorithm.
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A green lamp AvoidingObstacle lights up when the robot is trying to avoid an obstacle.
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Design Position Controlled Manipulator Using Simscape
This example shows you how to use Simulink® with Robotics System Toolbox™ to design a position
controller for a manipulator and compute joint position required to drive the Simscape™ Multibody™
model of the manipulator.

Introduction

In this example, you will load an included robot model using loadrobot as a rigidBodyTree
object, then create a Simscape Multibody model of the robot using smimport. Configure the model to
accept joint torque and return the computed joint position and velocity. Implement a computed torque
controller with joint position and velocity feedback using manipulator algorithm blocks. The
controller receives joint position and velocity information from the robot model and sends torque
commands to drive the robot to the desired joint position computed using Inverse Kinematics (IK).

Load Robot Model in Workspace

This example uses a model of the KINOVA® Gen3, a 7 degree-of-freedom robot manipulator. Call
loadrobot to generate a rigidBodyTree model of the robot. Set the DataFormat properties to be
consistent with Simscape.

robot = loadrobot("kinovaGen3",DataFormat="column");

Generate Simscape Multibody Model from Rigid Body Tree

Import the robot object into Simscape Multibody and get the model parameters.

robotSM = smimport(robot,ModelName="ManipulatorPositionControl_Subsystem");
sm_mdl = get_param(robotSM,"Name");

Configure Simscape Multibody Model

Prepare the Simscape Multibody model to accept the joint torque inputs and return the joint positions
and velocities. You can follow the steps below to manually configure the model or use the
helperInstrumentSMModels helper function to automatically configure the model.

Manual Configuration of Simscape Multibody Model

1 In your model, double-click a Joint block. The Property Inspector dialog box opens.
2 In the Property Inspector dialog box, select Z Revolute Primitive (Rz) > Actuation > Torque

> Provided by Input, and select Z Revolute Primitive (Rz) > Actuation > Motion >
Automatically computed. The block exposes a physical signal input port, labeled t.
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3. Select Z Revolute Primitive (Rz) > Sensing and enable Position, Velocity, and Acceleration.
The block exposes a physical signal output ports, labeled q, w, and b.
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4. Add a Simulink-PS Converter block from the Simscape > Utilities library, connect the Simulink-
PS Converter block to physical signal input port t of the Joint block.

5. Add a From block from the Simulink > Signal Routing library to the input port of the Simulink-
PS Converter block.

6. Add three PS-Simulink Converter blocks from the Simscape > Utilities library, connect the PS-
Simulink Converter blocks to physical signal output ports q, w, and b of the Joint block.

7. Add three Goto blocks from the Simulink > Signal Routing library to the output port of the PS-
Simulink Converter blocks.
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8. Repeat these steps for all the Joint blocks.

9. Add a Demux block from the Simulink > Signal Routing library and connect the joint torque
Goto blocks related to the respective joint torque From blocks.

10. Add three Mux blocks from the Simulink > Signal Routing library and connect the joint
motions From blocks related to the respective joint motions Goto blocks.

11. Create a subsystem of the Simscape Multibody model.

Configure Simscape Multibody Model Using Helper Function

Use the helperInstrumentSMModels helper function to automatically configure the model.

Call the helper function to automatically configure the Simscape Multibody model to accept torque
input.

helperInstrumentSMModels.instrumentRBTSupportedJointInputs(sm_mdl,robot,"torque")

Call the helper function again to configure the Simscape Multibody model to enable position, velocity,
and acceleration sensing at each joint.

helperInstrumentSMModels.instrumentRBTSupportedJointOutputs(sm_mdl,robot,"motion")

Create a subsystem of the Simscape Multibody model.

helperInstrumentSMModels.convertToSubsystem(sm_mdl)
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Set Up Variables in Model Workspace

Set up the variables in the model workspace that specify the start and end waypoints, and the joint
starting position and velocity.

mdlWks = get_param(robotSM,"ModelWorkspace");
assignin(mdlWks,"robotToTest",robot)
assignin(mdlWks,"q0",robot.homeConfiguration)
assignin(mdlWks,"dq0",zeros(size(robot.homeConfiguration)))

Computed Torque Controller

The Computed Torque Controller subsystem is built using three robotics manipulator blocks: Joint
Space Mass Matrix, Velocity Product Torque, and Gravity Torque. The rigidBodyTree model,
robotToTest, is assigned in all those blocks.
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The Computed Torque Controller subsystem accepts Measured Configuration, Measured
Velocities and Desired Configuration and returns Applied Torque for each joint of the
manipulator.

For more details about this controller, see “Perform Safe Trajectory Tracking Control Using Robotics
Manipulator Blocks” on page 1-268.

Set Up Controller Input

1 Add a Coordinate Transformation Conversion block from the Robotics System Toolbox >
Utilities library to the model. Set the input representation as Translation Vector and the
output representation as Homogeneous Transformation.
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2. Add a Constant block and set the value as [0.5 0.5 0.5]. Connect the Constant block to the
input port of the Coordinate Transformation Conversion block.

3. Add a Inverse Kinematics block from the Robotics System Toolbox > Manipulator
Algorithms library to the model.

4. In the Inverse Kinematics block, specify the Rigid body tree model as robotToTest, then click
Select body next to the End effector to select the end effector body.

1 Robotics System Toolbox Examples

1-104



5. Connect the output port of Coordinate Transformation Conversion block to the Pose port of the
Inverse Kinematics block.

6. Add another Constant block and set the value as [0 0 0 1 1 1]. Connect the Constant block to
the Weights port of the Inverse Kinematics block.

7. Connect a Delay block to the Config port of the Inverse Kinematics block and specify the Initial
condition as q0.
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8. Connect the output of the Delay block to the InitialGuess port of the Inverse Kinematics block.

Final Setup

Connect the Simscape Multibody Model subsystem, Computed Torque Controller subsystem,
Controller Input blocks, and a Scope block as shown in figure.
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Simulate Model

Open the provided ManipulatorPositionControl.slx model and replace the Robot subsystem with
the subsystem created in ManipulatorPositionControl_Subsystem model above, for it to be able to
fetch the meshes correctly.

open_system("ManipulatorPositionControl.slx")

Save the model and simulate it.

sim("ManipulatorPositionControl.slx","StopTime","5")

Visualize the multibody model in the Mechanics Explorer.
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Visualize the joint positions in the Scope.
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Perform Trajectory Tracking and Compute Joint Torque for
Manipulator Using Simscape

This example shows you how to use Simulink® with Robotics System Toolbox™ to perform trajectory
tracking and compute joint torque required to drive the Simscape™ Multibody™ model of the
manipulator along the given joint trajectory. This example can be further extended to scenarios with
obstacles to observe the changes in torque profile.

Introduction

In this example, you will load an included robot model using loadrobot as a rigidBodyTree
object, then create a Simscape Multibody model of the robot using smimport. Configure the model to
accept motion inputs such as joint position, velocity, and acceleration generated using the
Trapezoidal Velocity Profile Trajectory block and return the computed joint torque. Simulate the
model to visualize the robot motion and plot the joint torques.

Load Robot Model in Workspace

This example uses a model of the KINOVA® Gen3, a 7 degree-of-freedom robot manipulator. Call
loadrobot to generate a rigidBodyTree model of the robot. Set the DataFormat properties to be
consistent with Simscape.

robot = loadrobot("kinovaGen3",DataFormat="column");

Generate Simscape Multibody Model from Rigid Body Tree

Import the robot object into Simscape Multibody and get the model parameters.

robotSM = smimport(robot,ModelName="ManipulatorTrajectoryPlanning_Subsystem");
sm_mdl = get_param(robotSM,"Name");

Configure Simscape Multibody Model

Prepare the Simscape Multibody model to accept the joint motion inputs and return the joint torques.
You can follow the steps below to manually configure the model or use the
helperInstrumentSMModels helper function to automatically configure the model.

Manual Configuration of Simscape Multibody Model

1 In your model, double-click a Joint block. The Property Inspector dialog box opens.
2 In the Property Inspector dialog box, select Z Revolute Primitive (Rz) > Actuation > Torque

> Automatically computed, and select Z Revolute Primitive (Rz) > Actuation > Motion >
Provided by Input. The block exposes a physical signal input port, labeled q.
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3. In the Property Inspector block dialog box, select Z Revolute Primitive (Rz) > Sensing >
Actuator Torque. The block exposes a physical signal output port, labeled t.
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4. Add a Simulink-PS Converter block from the Simscape > Utilities library, connect the Simulink-
PS Converter block to physical signal input port q of the Joint block.

5. Double-click the Simulink-PS Converter block to open the block dialog box, click Input Handling
Tab, select Provided signals > Input and first two derivatives.
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6. Add three From block from the Simulink > Signal Routing library to the three input ports of the
Simulink-PS Converter block.

7. Add PS-Simulink Converter block from the Simscape > Utilities library, connect the PS-
Simulink Converter block to physical signal output port t of the Joint block.

8. Add Goto block from the Simulink > Signal Routing library to the output port of the PS-
Simulink Converter block.
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9. Repeat these steps for all the Joint blocks.

10. Add three Demux blocks from the Simulink > Signal Routing library and connect the joint
motions Goto blocks related to the respective joint motions From blocks.

11. Add a Mux block from the Simulink > Signal Routing library and connect the joint torque
From blocks related to the respective joint torque Goto blocks.

12. Create a subsystem of the Simscape Multibody model.

Configure Simscape Multibody Model Using Helper Function

Use the helperInstrumentSMModels helper function to automatically configure the model.

Call the helper function to automatically configure the Simscape Multibody model to accept motion
inputs such as joint position, velocity, and acceleration.

helperInstrumentSMModels.instrumentRBTSupportedJointInputs(sm_mdl,robot,"motion")

Call the helper function again to configure the Simscape Multibody model to attach torque sensors
that measure torque at each joint.

helperInstrumentSMModels.instrumentRBTSupportedJointOutputs(sm_mdl,robot,"torque")

Create a subsystem of the Simscape Multibody model.

helperInstrumentSMModels.convertToSubsystem(sm_mdl)
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Set Up Variables in Model Workspace

Set up the variables in the model workspace that specify the start and end waypoints, and the joint
starting position and velocity.

mdlWks = get_param(robotSM,'ModelWorkspace');
assignin(mdlWks,"robotToTest",robot)
assignin(mdlWks,"q0",robot.homeConfiguration)
assignin(mdlWks,"dq0",zeros(size(robot.homeConfiguration)))

Trajectory Generation

Add a Trapezoidal Velocity Profile Trajectory block from the Robotics System Toolbox >
Utilities library to the model and connect the q, qd, and qdd ports of the block to the Q_in,
Qdot_in, and Qddot_in input ports of the Simscape Multibody model subsystem.

In the Trapezoidal Velocity Profile Trajectory block parameters dialog box,

1 Set the Waypoints as [robotToTest.homeConfiguration
robotToTest.randomConfiguration robotToTest.randomConfiguration].

2 Set the Number of parameters to 1 and set the Parameter 1 as End Time.
3 Specify the End Time as 3.
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Final Setup

Add a Clock block from the Simulink > Sources library, connect the Clock block to the Time input
port of the Trapezoidal Velocity Profile Trajectory block. Add a Scope block and connect the
t_out port of the Simscape Multibody model subsystem to the Scope input.
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Simulate Model

Open the provided ManipulatorTrajectoryPlanning.slx model and replace the Robot subsystem
with the subsystem created in ManipulatorTrajectoryPlanning_Subsystem model above, for it to
be able to fetch the meshes correctly.

open_system("ManipulatorTrajectoryPlanning.slx")

Save the model and simulate it. The Trapezoidal Velocity Profile Trajectory block generates
random trajectories and drives the manipulator model accordingly. The manipulator model computes
the joint torque required to execute the motion.

sim("ManipulatorTrajectoryPlanning.slx","StopTime","4")

Visualize the multibody model in the Mechanics Explorer.
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Visualize the joint torques in the Scope.
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Choose Trajectories for Manipulator Paths
This example provides an overview of the types of trajectories available in Robotics System Toolbox™.
For manipulator motion, planning, and control applications, you must choose a trajectory for the
robot to follow. There are three main sections of this example. The first section shows the types of
trajectories that manipulators use, the second section demonstrates functions for generating
trajectories, and the final section shows more tools for trajectory planning.

Trajectory Types for Manipulators

When using trajectories with manipulators, the goal is to provide a feasible result subject to certain
constraints. For example, you often want a trajectory with smooth and continuous derivatives, such as
one that does not require instantaneous velocity or acceleration. The trajectory may also be subject to
position, velocity, or acceleration bounds. There are two general ways to use trajectories in the joint
space and in the task space.

Joint-Space Trajectories

A joint-space trajectory typically contains a set of waypoints of multiple robot configurations
connected using smooth motion. This example generates a trajectory using a trapezoidal velocity
profile, which progressively speeds up each joint to a maximum velocity and slows it down as it
approaches the next waypoint. For more information, see Trapezoidal Velocity Profile Trajectory on
page 1-0 .

Generate a trapezoidal velocity profile trajectory to connect waypoints for a Franka Emika Panda™
robot. First, define the time vector for the trajectories and load the robot model.

tpts = 0:4;
sampleRate = 20;
tvec = tpts(1):1/sampleRate:tpts(end);
numSamples = length(tvec);

robot = loadrobot('frankaEmikaPanda',DataFormat='column');

Define the joint-space trajectory. For this trajectory, the waypoints are the home configuration for the
model and two random configurations.

rng default
frankaWaypoints = [robot.homeConfiguration robot.randomConfiguration robot.randomConfiguration];
frankaTimepoints = linspace(tvec(1),tvec(end),3);
[q,qd] = trapveltraj(frankaWaypoints,numSamples);

Visualize the robot executing the trajectory by iterating through the generated trajectory points q.

figure
set(gcf,'Visible','on');
rc = rateControl(sampleRate);
for i = 1:numSamples
    show(robot,q(:,i),FastUpdate=true,PreservePlot=false);
    waitfor(rc);
end

1 Robotics System Toolbox Examples

1-120



To examine the different joint positions and velocities, plot all the dimensions against time. Use the
helperPlotJointSpaceTraj helper function to plot the joint-space trajectory and its waypoints.

helperPlotJointSpaceTraj('Joint-Space Trajectory and Waypoints', ...
    tvec,q,qd,frankaWaypoints,frankaTimepoints);
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Task-Space Trajectories

A task-space trajectory contains waypoints that represent end-effector motion in 3-D space. Generate
a minimum-jerk trajectory to connect waypoints in free space. The purpose of this trajectory profile is
to create a smooth trajectory with minimal jerky motion. For more information, see Minimum-Jerk
Trajectory on page 1-0 . Then generate the joint configurations of the Franka Emika Panda robot
using inverse kinematics.

First, create a set of waypoints, and then create the minimum-jerk trajectory using
minjerkpolytraj.

frankaSpaceWaypoints = [0.5 0.25 0.25; 0.75 0 0.35; 0.5 -0.25 0.25; 0.5 0.25 0.25]';
frankaTimepoints = linspace(tvec(1),tvec(end),4);
[pos,vel] = minjerkpolytraj(frankaSpaceWaypoints,frankaTimepoints,numSamples);

Use the inverseKinematics function to create an inverse kinematics solver and solve for
configurations that reach the desired end-effector positions over the trajectory.

rng(0) % Seed the RNG so the inverse kinematics solution is consistent
ik = inverseKinematics(RigidBodyTree=robot);
ik.SolverParameters.AllowRandomRestart = false;
q = zeros(9,numSamples);
weights = [0.2 0.2 0.2 1 1 1]; % Prioritize position over orientation
initialGuess = [0, 0, 0, -pi/2, 0, 0, 0, 0.01, 0.01]'; % Choose an inital guess within the robot joint limits
for i = 1:size(pos,2)
    targetPose = trvec2tform(pos(:,i)')*eul2tform([0, 0, pi]);
    q(:,i) = ik('panda_hand',targetPose,weights,initialGuess);
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    initialGuess = q(:,i); % Use the last result as the next initial guess
end

Show the results using the robot model.

figure
set(gcf,'Visible','on')
show(robot);

rc = rateControl(sampleRate);
for i = 1:numSamples
    show(robot, q(:,i),FastUpdate=true,PreservePlot=false);
    waitfor(rc);
end
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To examine the different joint positions and velocities, visualize these results by plotting all the
dimensions against time. Use the helperPlotTaskSpaceTraj helper function to plot the task-space
trajectory and its waypoints.

helperPlotTaskSpaceTraj('Task-Space Trajectory and Waypoints', ...
    tvec,pos,vel,frankaSpaceWaypoints,frankaTimepoints);
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Compare Various Trajectory Profiles

Gemerate trajectories using different tools, and then compare them using both task- and joint-space
visualization.

wpts = [0 45 15 90 45; 90 45 -45 15 90];
tpts = 0:(size(wpts,2)-1);

% Derived quantities.
sampleRate = 20;
tvec = tpts(1):1/sampleRate:tpts(end);
numSamples = length(tvec);

Minimum-Jerk Trajectory

The minjerkpolytraj function connects waypoints using a smooth, continuous motion. With the
default boundary conditions, the trajectory has zero initial and final velocity, but passes through all
intermediate waypoints with a continuous velocity.

Minimum-jerk trajectories are named as such because they minimize jerk, the third time-derivative of
the motion, resulting in a smooth profile that is convenient for mechanical systems. The basic
minimum-jerk trajectory is an analytical solution that hits the waypoints at the specified time points.

[q,qd,~,~,~,~,tvec] = minjerkpolytraj(wpts,tpts,numSamples);
helperPlotTaskSpaceTraj('Minimum-Jerk Trajectory',tvec,q,qd,wpts,tpts);
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Trapezoidal Velocity Profile Trajectory

A trapezoidal velocity profile stops at each waypoint, and ensures smooth point-to-point motion. The
profile name comes from the three phases of each segment that connects two waypoints:

• Acceleration from zero velocity to peak velocity
• Constant speed at the peak velocity
• Deceleration to zero velocity

This results in a velocity profile that is a trapezoid over each segment. Each segment is characterized
by the end time, peak velocity, peak acceleration, and acceleration time parameters, but specifiying
any two is sufficient to fully define the motion. For more information, see trapveltraj.

You can use a basic trapezoidal profile when the goal is to connect a set of waypoints, stopping at
each along the way. For example, this code connects waypoints using 1-second segments.

[q,qd,~,t] = trapveltraj(wpts,100);
helperPlotTaskSpaceTraj('Trapezoidal Profile, Max Velocity = 0.5',t,q,qd,wpts);
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Trapezoidal profiles often seek to satisfy certain constraints, such as velocity or acceleration bounds.
Because the trapezoidal profile is an exact specification, use a helper function to translate constraint
bounds to exact profile specifications. The helperProfileForMaxVel helper function accepts
velocity bounds. For more information on using the trapveltraj function to design velocity profiles,
see the “Design Trajectory with Velocity Limits Using Trapezoidal Velocity Profile” on page 1-
352example.

[endTimes,peakVels] = helperProfileForMaxVel(wpts, 0.5);
[q,qd,~,t] = trapveltraj(wpts,100,EndTime=endTimes,PeakVelocity=peakVels);

% The time at which the waypoints are hit is the vector of cumulative sums
% of the end times
trapVelTrajTime = [0 cumsum(endTimes(1,:))];
helperPlotTaskSpaceTraj('Trapezoidal Profile, Max Velocity = 0.5',t,q,qd,wpts,trapVelTrajTime);

 Choose Trajectories for Manipulator Paths

1-127



Cubic and Quintic Polynomial Trajectories

Some use cases can require a more general polynomial trajectory. The cubicpolytraj and
quinticpolytraj functions are general tools for creating interpolating piecewise polynomials. Like
the previous trajectory tools, they return position, velocity, and acceleration, as well as the piecewise
polynomial object.

In the default case, these functions use zero-valued boundary conditions, resulting in trajectories that
stop at every waypoint.

[q,qd] = cubicpolytraj(wpts,tpts,tvec);
helperPlotTaskSpaceTraj('Basic Cubic Polynomial',tvec,q,qd,wpts,tpts);
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You can use these functions to design an interpolating polynomial with custom boundary behavior.
For example, by using these functions together with other piecewise polynomial tools like spline,
pchip, or makima, you can create smooth profiles with desirable motion at the waypoints.

This example code derives boundary conditions from one of the built-in piecewise polynomial
functions in MATLAB. Select a polynomial function to see how it affects the cubic polynomial velocity
profile. The code uses a helper file to compute the velocity.

smoothPP = (tpts,wpts);
smoothVelPP = mkpp(smoothPP.breaks,robotics.core.internal.polyCoeffsDerivative(smoothPP.coefs),size(wpts,1));
smoothVelPoly = ppval(smoothVelPP,tpts);

Use the derived velocity as the boundary condition for the inner waypoints. Leave the outside
boundary conditions as zero velocity to ensure the trajectory starts and ends at zero velocity

boundaryVel = zeros(size(smoothVelPoly));
boundaryVel(:,2:end-1) = smoothVelPoly(:,2:end-1);
[q,qd] = cubicpolytraj(wpts,tpts,tvec,VelocityBoundaryCondition=boundaryVel);
helperPlotTaskSpaceTraj('Cubic Polynomial with Custom Velocity BCs',tvec,q,qd,wpts,tpts);
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Using a quintic polynomial instead ensures a smooth velocity profile.

[q,qd] = quinticpolytraj(wpts,tpts,tvec,VelocityBoundaryCondition=boundaryVel);
helperPlotTaskSpaceTraj('Quintic Polynomial with Custom Velocity BCs',tvec,q,qd,wpts,tpts);
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B-Spline Trajectory

A B-spline polynomial results in smooth, continuous motion, and is predominantly used for task-space
applications. You can create this trajectory by using the bsplinepolytraj function. Unlike the
other trajectories, which interpolate the waypoints that define them, a B-spline is defined by a set of
control points. The resulting trajectory hits only the initial and final control points, but falls in the
convex hull of the complete set of control points.

Apply the previously used waypoints as the control points.

[q,qd] = bsplinepolytraj(wpts,tpts([1 end]),tvec);
helperPlotTaskSpaceTraj('Non-interpolating B-spline',tvec,q,qd,wpts);
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You can create an interpolating B-spline by deriving a new set of control points from the original
waypoints, which the B-spline polynomial interpolates with the original waypoints. Like the standard
B-spline, use this polynomial primarily for task-space applications.

Use the helperCreateControlPointsFromWaypoints helper function to derive the new control
points.

cpts = helperCreateControlPointsFromWaypoints(wpts);
[q,qd] = bsplinepolytraj(cpts,tpts([1 end]),tvec);
helperPlotTaskSpaceTraj('Interpolating B-spline',tvec,q,qd,wpts);
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More Tools for Task-Space Trajectories

Some task-space applications benefit from computing not only the trajectories that interpolate
positions, but also the full pose of the manipulator. In those cases, consider using the rottraj and
transformtraj functions. The rottraj function creates a trajectory between two rotations, while
the transformtraj function does the same for two 4-by-4 homogeneous transformation matrices.
The functions output angular acceleration and velocity in addition to the position derivatives.

This example connects two poses, T1 and T2, which contain position and orientation data.

T1 = eul2tform([pi/4 0 pi/3]);
T2 = trvec2tform([5 -2 1]);
tInterval = [0 1];
tvec = 0:0.01:1;

Interpolate the two transformation matrices using transformtraj to create a trajectory of full,
interpolated poses, represented as transformation matrices.

[tfInterp,v1,a1] = transformtraj(T1,T2,tInterval,tvec);

Plot the trajectory in 3-D space using plotTransforms. This function requires both the rotational
data as a quaternion and the translational data from the interpolated transformation matrices
trajectory. Use tform2quat to find the quaternion and tform2trvec to find the translational data
from the trajectory.

figure
rotations = tform2quat(tfInterp);
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translations = tform2trvec(tfInterp);
plotTransforms(translations,rotations)
title('Interpolated Transformation Trajectory')
xlabel('X')
ylabel('Y')
zlabel('Z')

The 3-D plot shows that the rotations and motion are linear. Recall that feasible manipulator
trajectories should be smooth and continuous. Because the interpolation is linear, the trajectory is not
guaranteed to result in a smooth motion. This becomes clearer when you plot the position and
velocities separately.

figure
positions = reshape(tfInterp(1:3,4,:),3,size(tfInterp,3));
subplot(3,1,1); plot(tvec,positions)
title('XYZ Position in Time')
ylim('padded')
subplot(3,1,2); plot(tvec,v1(1:3,:))
title('Velocity in Time')
ylim('padded')
subplot(3,1,3); plot(tvec,v1(4:6,:)); 
title('Angular Velocity in Time')
ylim('padded')
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The velocities start and end at non-zero values, which is not a feasible trajectory for a manipulator,
and would cause sudden and jerky motion.

You can use the TimeScaling name-value argument of transformtraj as a workaround. This
argument defines the trajectory time using an intermediate parameterization, s, such that
transformtraj is defined using s t  as time. In the default case used in this example, time scaling is
uniform, so s t = t. The result is a linear motion between each pose. Instead, use time scaling defined
by a minimum-jerk trajectory: s t = minjerkpolytraj t .

Time scaling is a discrete set of values, s; d
dts; d2

dt2
s , which sample the function s t , defined on the

interval s = 0, 1 .

% The time scaling is a discrete set of values [s; ds/dt; d^2s/dt^2] that
% are sample the function s(t), defined on the interval s = [0,1]
[s,sd,sdd] = minjerkpolytraj([0 1],tInterval,numel(tvec));
[tfInterp,v1,a1] = transformtraj(T1,T2,tInterval,tvec,TimeScaling=[s; sd; sdd]);

Plot the interpolated transformation trajectory again to compare against the previous plots.

figure
rotations = tform2quat(tfInterp);
translations = tform2trvec(tfInterp);
plotTransforms(translations,rotations)
title('Interpolated Transformation Trajectory')
xlabel('X')
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ylabel('Y')
zlabel('Z')

figure
positions = reshape(tfInterp(1:3,4,:),3,size(tfInterp,3));
subplot(3,1,1); plot(tvec,positions)
title('XYZ Position in Time')
subplot(3,1,2); plot(tvec,v1(1:3,:))
title('Velocity in Time')
subplot(3,1,3); plot(tvec,v1(4:6,:))
title('Angular Velocity in Time')
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While the motion in space follows the same path, the second set of plots clarifies that the velocities
are smooth and followable in time, resulting in a trajectory that is feasible for a manipulator or other
mechanical system to follow.
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Load Predefined Robot Models
To quickly access common robot models, use the loadrobot function, which loads commercially
available robot models like the Universal Robots™ UR10 cobot, Boston Dynamics™ Atlas humanoid,
and KINOVA™ Gen 3 manipulator. Explore how to generate joint configurations and interact with the
robot models.

To import your own universal robot description format (URDF), see the importrobot function.

Specify the robot model type as a string to the loadrobot function. Utilize tab completion to select
from the list of provided models as inputs.

To use column vectors for joint configurations, specify the data format as "column".

ur10 = loadrobot("universalUR10");
atlas = loadrobot("atlas");
gen3 = loadrobot("kinovaGen3","DataFormat","column");

The loadrobot function returns a rigidBodyTree object thats represents the kinematics and
dynamics of each robot model. Some models may not load with dynamics or inertial properties for
bodies. Inspect individual rigid bodies using the Bodies property or the getBody function.

disp(gen3);

  rigidBodyTree with properties:

     NumBodies: 8
        Bodies: {1x8 cell}
          Base: [1x1 rigidBody]
     BodyNames: {1x8 cell}
      BaseName: 'base_link'
       Gravity: [0 0 0]
    DataFormat: 'column'

Call show to visualize the robot models in the home configuration. Replace the gen3 object with
other models to visualize them.

show(gen3);
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show(atlas);

 Load Predefined Robot Models

1-139



show(ur10);
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Generate Joint Configurations

Generate random configurations for the KINOVA Gen3 robot. The randomConfiguration function
outputs random joint positions within the limits of the model. To verify the model behaves as
expected, visualize a set of four configurations.

for i = 1:4
    subplot(2,2,i)
    config = randomConfiguration(gen3);
    show(gen3,config);
end
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Interact with Robot Model

To move the robot model around and inspect the behavior, load the interactive rigid body tree GUI.
You can set target end-effector positions, manually move joints, and select various elements in your
model.

interactiveGUI = interactiveRigidBodyTree(gen3);
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Click and drag the center disk to freely move the target end-effector position. The GUI uses “Inverse
Kinematics” to solve for the joint positions of each body. Use the axes to move linearly and the circles
to rotate about an axis.
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Click a rigidBody to view their specific parameters.
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Right-click to set a different target marker body. Changing the target body updates the end-effector of
the inverse kinematics solver.
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To manually control joints, right-click and toggle the marker control method.
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To control the rotation of a revolue joint on the body you selected, click and drag the yellow circle.
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Save Joint Configurations

Save specific configurations that you set using the addConfiguration function, which stores the
current joint positions in the StoredConfigurations property. This example sets a random
configuration before storing.

interactiveGUI.Configuration = randomConfiguration(gen3);
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addConfiguration(interactiveGUI)
disp(interactiveGUI.StoredConfigurations)

   -0.4218
   -1.6647
    1.3419
   -2.0818
    1.8179
   -0.4140
   -1.4517

Next Steps

Now that you built your model in MATLAB®, you may want to do many different things.

• Perform “Inverse Kinematics” to get joint configurations based on desired end-effector positions.
Specify additional robot constraints other than the model parameters including aiming
constraints, Cartesian bounds, or pose targets.

• Generate “Trajectory Generation and Following” based on waypoints and other parameters with
trapezoidal velocity profiles, B-splines, or polynomial trajectories.

• Peform “Manipulator Motion Planning” utilizing your robot models and an rapidly-exploring
random tree (RRT) path planner.

• Check for “Collision Detection” with obstacles in your environment to ensure safe and effective
motion of your robot.

 Load Predefined Robot Models

1-149



Build Basic Rigid Body Tree Models
This example shows how to use the elements of the rigid body tree robot model to build a basic robot
arm with five degrees of freedom. The model built in this example represents a common table top
robot arms built with servos and an integrated circuit board.

To load a robot model from a set of common commercially available robots, use the loadrobot
function. For an example, see Load Predefined Robot Models.

If you have a URDF file or Simscape Multibody™ model of your robot, you can import as a rigid body
tree using importrobot. For an example, see Import Simscape Multibody Models.

Create Rigid Body Elements

First, create a rigidBodyTree robot model. The rigid body tree robot model represents the entire
robot, which is made up of rigid bodies and joints that attach them together. The base of the robot is
a fixed frame that defines the world coordinates. Adding your first body, attaches the body to the
base.

robot = rigidBodyTree("DataFormat","column");
base = robot.Base;

Then, create a series of linkages as rigidBody objects. The robot consists of a rotating base, 3
rectangular arms, and a gripper.

rotatingBase = rigidBody("rotating_base");
arm1 = rigidBody("arm1");
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arm2 = rigidBody("arm2");
arm3 = rigidBody("arm3");
gripper = rigidBody("gripper");

Create collision objects for each rigid body with different shapes and dimensions. When you create
the collision objects, the coordinate frame is centered in the middle of the object by default. Set the
Pose property to move the frame to the bottom of each body along the z-axis. Model the gripper as a
sphere for simplicity.

collBase = collisionCylinder(0.05,0.04); % cylinder: radius,length
collBase.Pose = trvec2tform([0 0 0.04/2]);
coll1 = collisionBox(0.01,0.02,0.15); % box: length, width, height (x,y,z)
coll1.Pose = trvec2tform([0 0 0.15/2]);
coll2 = collisionBox(0.01,0.02,0.15); % box: length, width, height (x,y,z)
coll2.Pose = trvec2tform([0 0 0.15/2]);
coll3 = collisionBox(0.01,0.02,0.15); % box: length, width, height (x,y,z)
coll3.Pose = trvec2tform([0 0 0.15/2]);
collGripper = collisionSphere(0.025); % sphere: radius
collGripper.Pose = trvec2tform([0 -0.015 0.025/2]);

Add the collision bodies to the rigid body objects.

addCollision(rotatingBase,collBase)
addCollision(arm1,coll1)
addCollision(arm2,coll2)
addCollision(arm3,coll3)
addCollision(gripper,collGripper)

Attach Joints

Each rigid body is attached using a revolute joint. Create the rigidBodyJoint objects for each
body. Specify the x-axis as the axis of rotation for the rectangular arm joints. Specify the y-axis for the
gripper. The default axis is the z-axis.

jntBase = rigidBodyJoint("base_joint","revolute");
jnt1 = rigidBodyJoint("jnt1","revolute");
jnt2 = rigidBodyJoint("jnt2","revolute");
jnt3 = rigidBodyJoint("jnt3","revolute");
jntGripper = rigidBodyJoint("gripper_joint","revolute");

jnt1.JointAxis = [1 0 0]; % x-axis
jnt2.JointAxis = [1 0 0];
jnt3.JointAxis = [1 0 0];
jntGripper.JointAxis = [0 1 0] % y-axis

jntGripper = 
  rigidBodyJoint with properties:

                      Type: 'revolute'
                      Name: 'gripper_joint'
                 JointAxis: [0 1 0]
            PositionLimits: [-3.1416 3.1416]
              HomePosition: 0
    JointToParentTransform: [4x4 double]
     ChildToJointTransform: [4x4 double]
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Set transformations of the joint attachment between bodies. Each transformation is based on the
dimensions of the previous rigid body length (z-axis). Offset the arm joints in the x-axis to avoid
collisions during rotation.

setFixedTransform(jnt1,trvec2tform([0.015 0 0.04]))
setFixedTransform(jnt2,trvec2tform([-0.015 0 0.15]))
setFixedTransform(jnt3,trvec2tform([0.015 0 0.15]))
setFixedTransform(jntGripper,trvec2tform([0 0 0.15]))

Assemble Robot

Create an object array for both the bodies and joints, including the original base. Add each joint to
the body, and then add the body to the tree. Visualize each step.

bodies = {base,rotatingBase,arm1,arm2,arm3,gripper};
joints = {[],jntBase,jnt1,jnt2,jnt3,jntGripper};

figure("Name","Assemble Robot","Visible","on")
for i = 2:length(bodies) % Skip base. Iterate through adding bodies and joints.
            bodies{i}.Joint = joints{i};
            addBody(robot,bodies{i},bodies{i-1}.Name)
            show(robot,"Collisions","on","Frames","off");
            drawnow;
end
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Call the showdetails function to view a list of the final tree information. Ensure the parent-child
relationship and joint types are correct.

showdetails(robot)

--------------------
Robot: (5 bodies)

 Idx            Body Name           Joint Name           Joint Type            Parent Name(Idx)   Children Name(s)
 ---            ---------           ----------           ----------            ----------------   ----------------
   1        rotating_base           base_joint             revolute                     base(0)   arm1(2)  
   2                 arm1                 jnt1             revolute            rotating_base(1)   arm2(3)  
   3                 arm2                 jnt2             revolute                     arm1(2)   arm3(4)  
   4                 arm3                 jnt3             revolute                     arm2(3)   gripper(5)  
   5              gripper        gripper_joint             revolute                     arm3(4)   
--------------------

Interact With Robot Model

Visualize the robot model to confirm the dimensions using the interactiveRigidBodyTree object.
Use the interactive GUI to move the model around. You may select specific bodies and set their joint
position. To interact with more detailed models provided with Robotics System Toolbox™, see Load
Predefined Robot Models or the loadrobot function.

figure("Name","Interactive GUI")
gui = interactiveRigidBodyTree(robot,"MarkerScaleFactor",0.25);
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Move the interactive marker around to test different desired gripper positions. The GUI uses inverse
kinematics to generate the best joint configuration. For more information about the interactive GUI,
see interactiveRigidBodyTree object.
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Next Steps

Now that you built your model in MATLAB®, you may want to do many different things.

• Perform “Inverse Kinematics” to get joint configurations based on desired end-effector positions.
Specify additional robot constraints other than the model parameters including aiming
constraints, Cartesian bounds, or pose targets.

• Generate “Trajectory Generation and Following” based on waypoints and other parameters with
trapezoidal velocity profiles, B-splines, or polynomial trajectories.

• Peform “Manipulator Motion Planning” utilizing your robot models and an rapidly-exploring
random tree (RRT) path planner.

• Check for “Collision Detection” with obstacles in your environment to ensure safe and effective
motion of your robot.
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Interactively Build a Trajectory for an ABB YuMi Robot
This example shows how to use the interactiveRigidBodyTree object to move a robot, design a
trajectory, and replay it.

Load Robot Visualization and Build Environment

Load the 'abbYumi' robot model. Initialize the interactive figure using
interactiveRigidBodyTree. Save the current axes.

robot = loadrobot('abbYumi', 'Gravity', [0 0 -9.81]);
iviz = interactiveRigidBodyTree(robot);
ax = gca;

Build an environment consisting of a collision boxes that represent a floor, two shelves with objects,
and a center table.

plane = collisionBox(1.5,1.5,0.05);
plane.Pose = trvec2tform([0.25 0 -0.025]);
show(plane,'Parent', ax);

leftShelf = collisionBox(0.25,0.1,0.2);
leftShelf.Pose = trvec2tform([0.3 -.65 0.1]);
[~, patchObj] = show(leftShelf,'Parent',ax);
patchObj.FaceColor = [0 0 1];

rightShelf = collisionBox(0.25,0.1,0.2);
rightShelf.Pose = trvec2tform([0.3 .65 0.1]);
[~, patchObj] = show(rightShelf,'Parent',ax);
patchObj.FaceColor = [0 0 1];

leftWidget = collisionCylinder(0.01, 0.07);
leftWidget.Pose = trvec2tform([0.3 -0.65 0.225]);
[~, patchObj] = show(leftWidget,'Parent',ax);
patchObj.FaceColor = [1 0 0];

rightWidget = collisionBox(0.03, 0.02, 0.07);
rightWidget.Pose = trvec2tform([0.3 0.65 0.225]);
[~, patchObj] = show(rightWidget,'Parent',ax);
patchObj.FaceColor = [1 0 0];

centerTable = collisionBox(0.5,0.3,0.05);
centerTable.Pose = trvec2tform([0.75 0 0.025]);
[~, patchObj] = show(centerTable,'Parent',ax);
patchObj.FaceColor = [0 1 0];
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Interactively Generate Configurations

Use the interactive visualization to move the robot around and set configurations. When the figure is
initialized, the robot is in its home configuration with the arms crossed. Zoom in and click on an end
effector to get more information.
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To select the body as the end effector, right-click on the body to select it.
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The marker body can also be assigned from the command line:

iviz.MarkerBodyName = "gripper_r_base";

Once the body has been set, use the provided marker elements to move the marker around, and the
selected body follows. Dragging the central gray marker moves the marker in Cartesian space. The
red, green, and blue axes move the marker along the xyz-axes. The circles rotate the marker about
the axes of equivalent color.
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You can also move individual joints by right-clicking the joint and click Toggle marker control
method.

The MarkerControlMethod property of the object is set to "JointControl".
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These steps can also be accomplished by changing properties on the object directly.

iviz.MarkerBodyName = "yumi_link_2_r";
iviz.MarkerControlMethod = "JointControl";
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Changing to joint control produces a yellow marker that allows the joint position to be set directly.
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Iteractively move the robot around until you have a desired configuration. Save configurations using
addConfiguration. Each call adds the current configuration to the StoredConfigurations
property.

addConfiguration(iviz)

Define Waypoints for a Trajectory

For the purpose of this example, a set of configurations are provided in a .mat file.

Load the configurations, and specify them as the set of stored configurations. The first configuration
is added by updating the Configuration property and calling addConfiguration, which you
could do interactively, but the rest are simply added by assigning the StoredConfigurations
property directly.

load abbYumiSaveTrajectoryWaypts.mat

removeConfigurations(iviz) % Clear stored configurations
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% Start at a valid starting configuration
iviz.Configuration = startingConfig;

addConfiguration(iviz)

% Specify the entire set of waypoints
iviz.StoredConfigurations = [startingConfig, ...
                             graspApproachConfig, ...
                             graspPoseConfig, ...
                             graspDepartConfig, ...
                             placeApproachConfig, ...
                             placeConfig, ...
                             placeDepartConfig, ...
                             startingConfig];

Generate the Trajectory and Play It Back

Once all the waypoints have been stored, construct a trajectory that the robot follows. For this
example, a trapezoidal velocity profile is generated using trapveltraj. A trapezoidal velocity profile
means the robot stops smoothly at each waypoint, but achieves a set max speed while in motion.

numSamples = 100*size(iviz.StoredConfigurations, 2) + 1;
[q,~,~, tvec] = trapveltraj(iviz.StoredConfigurations,numSamples,'EndTime',2);

Replay the generated trajectory by iterating the generated q matrix, which represents a series of
joint configurations that move between each waypoint. In this case, a rate control object is used to
ensure that the play back speed is reflective of the actual execution speed.
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iviz.ShowMarker = false;
showFigure(iviz)
rateCtrlObj = rateControl(numSamples/(max(tvec) + tvec(2)));
for i = 1:numSamples
    iviz.Configuration = q(:,i);
    waitfor(rateCtrlObj);
end

The figure shows the robot executes a smooth trajectory between all the defined waypoints.
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Build Manipulator Robot Using Kinematic DH Parameters
Use the Denavit-Hartenberg (DH) parameters of the Puma560® manipulator robot to incrementally
build a rigid body tree robot model. Specify the relative DH parameters for each joint as you attach
them. Visualize the robot frames, and interact with the final model.

The DH parameters define the geometry of how each rigid body attaches to its parent via a joint. The
parameters follow a four transformation convention:

• A — Length of the common normal line between the two z-axes, which is perpendicular to both
axes

• α — Angle of rotation for the common normal
• d — Offset along the z-axis in the normal direction, from parent to child
• θ — Angle of rotation for the x-axis along the previous z-axis

Specify the parameters for the Puma560 robot [1] on page 1-0  as a matrix. Values come from .

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object.

robot = rigidBodyTree;

Create a cell array for the rigid body object, and another for the joint objects. Iterate through the DH
parameters performing this process:

1 Create a rigidBody object with a unique name.
2 Create and name a revolute rigidBodyJoint object.
3 Use setFixedTransform to specify the body-to-body transformation of the joint using DH

parameters. The function ignores the final element of the DH parameters, theta, because the
angle of the body is dependent on the joint position.

4 Use addBody to attach the body to the rigid body tree.

bodies = cell(6,1);
joints = cell(6,1);
for i = 1:6
    bodies{i} = rigidBody(['body' num2str(i)]);
    joints{i} = rigidBodyJoint(['jnt' num2str(i)],"revolute");
    setFixedTransform(joints{i},dhparams(i,:),"dh");
    bodies{i}.Joint = joints{i};
    if i == 1 % Add first body to base
        addBody(robot,bodies{i},"base")
    else % Add current body to previous body by name
        addBody(robot,bodies{i},bodies{i-1}.Name)
    end
end
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Verify that your robot has been built properly by using the showdetails or show function. The
showdetails function lists all the bodies of the robot in the MATLAB® command window. The show
function displays the robot with a specified configuration (home by default).

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

figure(Name="PUMA Robot Model")
show(robot);

Interact with Robot Model

Visualize the robot model to confirm its dimensions by using the interactiveRigidBodyTree
object.
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figure(Name="Interactive GUI")
gui = interactiveRigidBodyTree(robot,MarkerScaleFactor=0.5);

Click and drag the marker in the interactive GUI to reposition the end effector. The GUI uses inverse
kinematics to solve for the joint positions that achieve the best possible match to the specified end-
effector position. Right-click a specific body frame to set it as the target marker body, or to change
the control method for setting specific joint positions.
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Next Steps

Now that you have built your model in MATLAB®, these are some possible next steps.

• Perform “Inverse Kinematics” to get joint configurations based on desired end-effector positions.
Specify robot constraints in addition to those of the model parameters, including aiming
constraints, Cartesian bounds, and pose targets.

• “Trajectory Generation and Following”, based on waypoints and other parameters, with
trapezoidal velocity profiles, B-splines, or polynomial trajectories.

• Peform “Manipulator Motion Planning” utilizing your robot models and a rapidly-exploring random
tree (RRT) path planner.

• Use “Collision Detection” with obstacles in your environment to ensure safe and effective motion
for your robot.

References
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Interactively Build A Robot Trajectory
Build a trajectory using interactive markers on the ABB YuMi robot model. The
interactiveRigidBodyTree object displays the rigid body tree robot model in an interactive
figure. This example shows how to move different parts of the robot, design a trajectory, and save
configurations.

Load Robot Visualization and Build Environment

Load the 'abbYumi' robot model. Initialize the interactive figure using
interactiveRigidBodyTree. Save the current axes.

robot = loadrobot('abbYumi', 'Gravity', [0 0 -9.81]);
iviz = interactiveRigidBodyTree(robot);
ax = gca;

Build an environment consisting of a collision boxes that represent a floor, two shelves with objects,
and a center table.

plane = collisionBox(1.5,1.5,0.05);
plane.Pose = trvec2tform([0.25 0 -0.025]);
show(plane,'Parent', ax);

leftShelf = collisionBox(0.25,0.1,0.2);
leftShelf.Pose = trvec2tform([0.3 -.65 0.1]);
[~, patchObj] = show(leftShelf,'Parent',ax);
patchObj.FaceColor = [0 0 1];

rightShelf = collisionBox(0.25,0.1,0.2);
rightShelf.Pose = trvec2tform([0.3 .65 0.1]);
[~, patchObj] = show(rightShelf,'Parent',ax);
patchObj.FaceColor = [0 0 1];

leftWidget = collisionCylinder(0.01, 0.07);
leftWidget.Pose = trvec2tform([0.3 -0.65 0.225]);
[~, patchObj] = show(leftWidget,'Parent',ax);
patchObj.FaceColor = [1 0 0];

rightWidget = collisionBox(0.03, 0.02, 0.07);
rightWidget.Pose = trvec2tform([0.3 0.65 0.225]);
[~, patchObj] = show(rightWidget,'Parent',ax);
patchObj.FaceColor = [1 0 0];

centerTable = collisionBox(0.5,0.3,0.05);
centerTable.Pose = trvec2tform([0.75 0 0.025]);
[~, patchObj] = show(centerTable,'Parent',ax);
patchObj.FaceColor = [0 1 0];
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Interactively Generate Configurations

Use the interactive visualization to move the robot around and set configurations. When the figure is
initialized, the robot is in its home configuration with the arms crossed. Zoom in and click on an end
effector to get more information.
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To select the body as the end effector, right-click on the body and choose Set body as marker body.
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The marker body can also be assigned from the command line:

iviz.MarkerBodyName = "gripper_r_base";

Once the body has been set, use the provided marker elements to move the marker around, and the
selected body follows. Dragging the central gray marker moves the marker in Cartesian space. The
red, green, and blue axes move the marker along the xyz-axes. The circles rotate the marker about
the axes of equivalent color.
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You can also move individual joints by right-clicking the joint and click Toggle marker control
method.
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These steps can also be accomplished by changing properties on the object directly. The
MarkerControlMethod property of the object is set to "JointControl".

iviz.MarkerBodyName = "yumi_link_2_r";
iviz.MarkerControlMethod = "JointControl";
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Changing to joint control produces a yellow marker that allows the joint position to be set directly.
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Iteractively move the robot around until you have a desired configuration. Save configurations using
addConfiguration. Each call adds the current configuration to the StoredConfigurations
property.

addConfiguration(iviz)

Define Waypoints for a Trajectory

For the purpose of this example, a set of configurations are provided in a .mat file.

Load the configurations, and specify them as the set of stored configurations. The first configuration
is added by updating the Configuration property and calling addConfiguration, which you
could do interactively, but the rest are simply added by assigning the StoredConfigurations
property directly.

load abbYumiSaveTrajectoryWaypts.mat

removeConfigurations(iviz) % Clear stored configurations
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% Start at a valid starting configuration
iviz.Configuration = startingConfig;

addConfiguration(iviz)

% Specify the entire set of waypoints
iviz.StoredConfigurations = [startingConfig, ...
                             graspApproachConfig, ...
                             graspPoseConfig, ...
                             graspDepartConfig, ...
                             placeApproachConfig, ...
                             placeConfig, ...
                             placeDepartConfig, ...
                             startingConfig];

Generate the Trajectory and Play It Back

Once all the waypoints have been stored, construct a trajectory that the robot follows. For this
example, a trapezoidal velocity profile is generated using trapveltraj. A trapezoidal velocity profile
means the robot stops smoothly at each waypoint, but achieves a set max speed while in motion.

numSamples = 100*size(iviz.StoredConfigurations, 2) + 1;
[q,~,~,tvec] = trapveltraj(iviz.StoredConfigurations,numSamples,'EndTime',2);

Replay the generated trajectory by iterating through the generated q matrix, which represents a
series of joint configurations that move between each waypoint. In this case, a rate control object is
used to ensure that the play back speed is reflective of the actual execution speed.
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iviz.ShowMarker = false;
showFigure(iviz)
rateCtrlObj = rateControl(numSamples/(max(tvec) + tvec(2)));
for i = 1:numSamples
    iviz.Configuration = q(:,i);
    waitfor(rateCtrlObj);
end

The figure shows the robot executes a smooth trajectory between all the defined waypoints.
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Position Delta Robot Using Generalized Inverse Kinematics
Model a delta robot using the a rigidBodyTree robot model. Specify kinematic constraints for
generalized inverse kinematics (GIK) to ensure the proper behavior of the robot. Solve for joint
configurations that obey the defined model and constraints.

Create Delta Robot

Normally, delta robots contain closed-loop kinematic chains. The rigidBodyTree object does not
support closed-loop chains. To avoid this, the robot is modeled as a tree, with the arms of the delta
robot remaining unconnected. Call the helper function which builds the robot model and outputs the
rigidBodyTree object.

In a subsequent step, the generalized inverse kinematics solver will apply constraints that force the
separate arms of the tree to move together, thereby ensuring that the robot behaves in a
kinematically accurate manner.

The robot is fairly complicated, so a helper function is used to create the rigidBodyTree object.

robot = exampleHelperDeltaRobot;
show(robot);

As shown, the robot consists of three arms, but they still need to be connected to match the classic
delta robot configuration.
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Create Inverse Kinematic Constraints

Create a generalizedInverseKinematics object, and specify the robot model. Limit the
maximum number of interations based on performance.

gik1 = generalizedInverseKinematics('RigidBodyTree', robot);
gik1.SolverParameters.MaxIterations = 20;

Create an interactiveRigidBodyTree object to visualize the robot model and provide interactive
markers for moving bodies. This interactivity helps verify your kinematic constraints. Specify the
gik1 solver using name-value pairs. Specify a pose weight vector that only focuses on the xyz-
position and not the orientation.

viztree = interactiveRigidBodyTree(robot, 'IKSolver', gik1, 'SolverPoseWeights', [0 1]);

Using this interactive object, the end effector can be dragged around to show how the robot moves.
Currently, the behavior is not as desired for a normal delta robot.

Store the current axes.

ax = gca;

Add constraints to the GIK solver to ensure that the arms are connected. Attach the two arms with no
end effector to the 6th body of the primary arm which includes the end effector.

% Ensure that the body 6 of arm 2 maintains a pose relative to body 6 of arm 1
poseTgt1 = constraintPoseTarget('arm2_body6');
poseTgt1.ReferenceBody = 'arm1_body6';
poseTgt1.TargetTransform = trvec2tform([-sqrt(3)*0.5*0.2, 0.5*0.2, 0]) * eul2tform([2*pi/3, 0, 0]);

% Ensure that the body 6 of arm 3 maintains a pose relative to body 6 of arm 1
poseTgt2 = constraintPoseTarget('arm3_body6');
poseTgt2.ReferenceBody = 'arm1_body6';
poseTgt2.TargetTransform = trvec2tform([-sqrt(3)*0.5*0.2, -0.5*0.2, 0]) * eul2tform([-2*pi/3, 0, 0]);

To apply these constraints to the robot, call addConstraint to the vizTree object.

addConstraint(viztree,poseTgt1);
addConstraint(viztree,poseTgt2);
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Now when the end effector is moved around, the constraints are respected and the arms stay
connected.

Solve Generalized Inverse Kinematics Programmatically

The interactive visualization is useful for validating the solver constraints, but for direct
programmatic use, create a separate GIK solver that can be called. This solver can be copied from the
IKSolver property of the interactiveRigidBodyTree object, or created independently.

gik2 = generalizedInverseKinematics('RigidBodyTree', robot);
gik2.SolverParameters.MaxIterations = 20;

For the GIK solver, an additional constraint is required to define the end effector position, which is
normally controlled by the interactive marker. Update the TargetTransform to solve for different
desired end-effector positions.

poseTgt3 = constraintPoseTarget('endEffector');
poseTgt3.ReferenceBody = 'base';
poseTgt3.TargetTransform = trvec2tform([0, 0, -1]);

Specify all the constraint types used by the solver.

gik2.ConstraintInputs = {'pose','pose', 'pose'};

Call the gik2 solver with the specified pose target constraint objects. Give an initial guess of the
home configuration of the robot. Show the solution.
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% Provide an initial guess for the solver
q0 = homeConfiguration(robot);

% Solve for a the target pose given to poseTgt3
[q, solutionInfo] = gik2(q0, poseTgt1, poseTgt2, poseTgt3);

% Visualize the results
figure;
show(robot, q);
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Trajectory Control Modeling with Inverse Kinematics
This Simulink example demonstrates how the Inverse Kinematics block can drive a manipulator along
a specified trajectory. The desired trajectory is specified as a series of tightly-spaced poses for the
end effector of the manipulator. Trajectory generation and waypoint definition represents many
robotics applications like pick and place operation, calculating trajectories from spatial acceleration
and velocity profiles, or even mimicking external observations of key frames using cameras and
computer vision. Once a trajectory is generated, the Inverse Kinematics block is used to translate this
to a joint-space trajectory, which can then be used to simulate the dynamics of the manipulator and
controller.

Model Overview

Load the model to see how it is constructed.

open_system('IKTrajectoryControlExample.slx');

The model is composed of four primary operations:

• Target Pose Generation
• Inverse Kinematics
• Manipulator Dynamics
• Pose Measurement

Target Pose Generation

This Stateflow chart selects which waypoint is the current objective for the manipulator. The chart
adjusts the target to the next waypoint once the manipulator gets to within a tolerance of the current
objective. The chart also converts and assembles the components of the waypoint into a homogenous
transformation through the eul2tform function. Once there are no more waypoints to select, the
chart terminates the simulation.
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Inverse Kinematics

Inverse kinematics calculated a set of joint angles to produce a desired pose for an end effector. Use
the Inverse Kinematicswith a rigidBodyTree model and specify the target pose of the end effect as
a homogenous transformation. Specify a series of weights for the relative tolerance constraints on the
position and orientation of the solution, and give an initial estimate of the joint positions. The block
outputs a vector of joint positions that produce the desired pose from the rigidBodyTree model
specified in the block parameters. To ensure smooth continuity of the solutions, the previous
configuration solution is used as the starting position for the solver. This also reduces the redundancy
of calculations if the target pose has not updated since the last simulation time step.

Manipulator Dynamics

The manipulator dynamics consists of two components, a controller to generate torque signals and a
dynamics model to model the dynamics of the manipulator given these torque signals. The controller
in the example uses a feed-forward component calculated through the inverse dynamics of the
manipulator and a feedback PD controller to correct for error. The model of the manipulator uses the
Forward Dynamics block that works with a rigidBodyTree object. For more sophisticated dynamics
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and visualization techniques, consider utilizing tools from the Control Systems Toolbox™ blockset and
Simscape Multibody™ to replace the Forward Dynamics block.

Pose Measurement

The pose measurement takes the joint angle readings from the manipulator model and converts them
into a homogenous transform matrix to be used as feedback in the Waypoint Selection section.

Manipulator Definition

The manipulator used for this example is the Rethink Sawyer™ robot manipulator. The
rigidBodyTree object that describes the manipulator is imported from a URDF (unified robot
description format) file using importrobot.

% Import the manipulator as a rigidBodyTree Object
sawyer = importrobot('sawyer.urdf');
sawyer.DataFormat = 'column';

% Define end-effector body name
eeName = 'right_hand';

% Define the number of joints in the manipulator
numJoints = 8;

% Visualize the manipulator
show(sawyer);
xlim([-1.00 1.00])
ylim([-1.00 1.00]);
zlim([-1.02 0.98]);
view([128.88 10.45]);
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Waypoint Generation

In this example, the goal of the manipulator is to be able to trace out the boundaries of the coins
detected in the image, coins.png. First, the image is processed to find the boundaries of the coins.

I = imread('coins.png');
bwBoundaries = imread('coinBoundaries.png');

figure
subplot(1,2,1)
imshow(I,'Border','tight')
title('Original Image')

subplot(1,2,2)
imshow(bwBoundaries,'Border','tight')
title('Processed Image with Boundary Detection')
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After the image processing, the edges of the coins are extracted as pixel locations. The data is loaded
in from the MAT-file, boundaryData. boundaries is a cell array where each cell contains an array
describing the pixel coordinates for a single detected boundary. A more comprehensive view of how
to generate this data can be found in the example, "Boundary Tracing in Images" (requires Image
Processing Toolbox).

load boundaryData.mat boundaries
whos boundaries

  Name             Size            Bytes  Class    Attributes

  boundaries      10x1             25376  cell               

To map this data to the world frame, we need to define where the image is located and the scaling
between pixel coordinates and spatial coordinates.

% Image origin coordinates
imageOrigin = [0.4,0.2,0.08];

% Scale factor to convert from pixels to physical distance
scale = 0.0015;

The Euler angles for the desired end effector orientation at each point must also be defined.

eeOrientation = [0, pi, 0];

In this example the orientation is chosen such that the end effector is always perpendicular to the
plane of the image.
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Once this information is defined each set of desired coordinates and Euler angles can be compiled
into a waypoint. Each waypoint is represented as a six-element vector whose first three elements
correspond to the desired xyz-positions of the manipulator in the world frame. The last three
elements correspond to the ZYX Euler angles of the desired orientation.

Waypoint = X Y Z ϕz ϕy ϕx

The waypoints are concatenated to form an n-by-6 array, where n is the total number of poses in the
trajectory. Each row in the array corresponds to a waypoint in the trajectory.

% Clear previous waypoints and begin building wayPoint array
clear wayPoints

% Start just above image origin
waypt0 = [imageOrigin + [0 0 .2],eeOrientation];

% Touch the origin of the image
waypt1 = [imageOrigin,eeOrientation];

% Interpolate each element for smooth motion to the origin of the image
for i = 1:6
    
    interp = linspace(waypt0(i),waypt1(i),100);
    wayPoints(:,i) = interp';
    
end

In total, there are 10 coins. For simiplicity and speed, a smaller subset of coins can be traced by
limiting the total number passed to the waypoints. Below, numTraces = 3 coins are traced in the
image.

% Define the number of coins to trace
numTraces = 3;

% Assemble the waypoints for boundary tracing
for i = 1:min(numTraces, size(boundaries,1))
    
    %Select a boundary and map to physical size
    segment = boundaries{i}*scale;
    
    % Pad data for approach waypoint and lift waypoint between boundaries
    segment = [segment(1,:); segment(:,:); segment(end,:)];
    
    % Z-offset for moving between boundaries
    segment(1,3) = .02;
    segment(end,3) = .02;
    
    % Translate to origin of image
    cartesianCoord = imageOrigin + segment;
    
    % Repeat desired orientation to match the number of waypoints being added
    eulerAngles = repmat(eeOrientation,size(segment,1),1);
    
    % Append data to end of previous wayPoints 
    wayPoints = [wayPoints;
                 cartesianCoord, eulerAngles]; 
end
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This array is the primary input to the model.

Model Setup

Several parameters must be initialized before the model can be run.

% Initialize size of q0, the robot joint configuration at t=0. This will
% later be replaced by the first waypoint.
q0 = zeros(numJoints,1);

% Define a sampling rate for the simulation.
Ts = .01;

% Define a [1x6] vector of relative weights on the orientation and 
% position error for the inverse kinematics solver.
weights = ones(1,6);

% Transform the first waypoint to a Homogenous Transform Matrix for initialization
initTargetPose = eul2tform(wayPoints(1,4:6));
initTargetPose(1:3,end) = wayPoints(1,1:3)';

% Solve for q0 such that the manipulator begins at the first waypoint
ik = inverseKinematics('RigidBodyTree',sawyer);
[q0,solInfo] = ik(eeName,initTargetPose,weights,q0);

Simulate the Manipulator Motion

To simulate the model, use the sim command. The model generates the output dataset, jointData
and shows the progress in two plots:

• The X Y Plot shows a top-down view of the tracing motions of the manipulator. The lines between
the circles occur as the manipulator transitions from one coin outline to the next.

• The Waypoint Tracking plot visualizes the progress in 3D. The green dot indicates the target
position. The red dot indicates the actual end-effector position achieved by the end effector using
feedback control.

% Close currently open figures 
close all

% Open & simulate the model
open_system('IKTrajectoryControlExample.slx');
sim('IKTrajectoryControlExample.slx');
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Visualize the Results

The model outputs two datasets that can be used for visualization after simulation. The joint
configurations are provided as jointData. The robot end-effector poses are output as poseData.

% Remove unnecessary meshes for faster visualization
clearMeshes(sawyer);

% Data for mapping image
[m,n] = size(I);

[X,Y] = meshgrid(0:m,0:n);
X = imageOrigin(1) + X*scale;
Y = imageOrigin(2) + Y*scale;

Z = zeros(size(X));
Z = Z + imageOrigin(3);

% Close all open figures
close all

% Initialize a new figure window
figure;
set(gcf,'Visible','on');

% Plot the initial robot position
show(sawyer, jointData(1,:)');
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hold on

% Initialize end effector plot position
p = plot3(0,0,0,'.');
warp(X,Y,Z,I');

% Change view angle and axis
view(65,45)
axis([-.25 1 -.25 .75 0 0.75])

% Iterate through the outputs at 10-sample intervals to visualize the results
for j = 1:10:length(jointData)
    % Display manipulator model
    show(sawyer,jointData(j,:)', 'Frames', 'off', 'PreservePlot', false);
    
    % Get end effector position from homoegenous transform output
    pos = poseData(1:3,4,j);
    
    % Update end effector position for plot
    p.XData = [p.XData pos(1)];
    p.YData = [p.YData pos(2)];
    p.ZData = [p.ZData pos(3)];
    
    % Update figure
    drawnow
end
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Control PR2 Arm Movements Using ROS Actions and Inverse
Kinematics

This example shows how to send commands to robotic manipulators in MATLAB®. Joint position
commands are sent via a ROS action client over a ROS network. This example also shows how to
calculate joint positions for a desired end-effector position. A rigid body tree defines the robot
geometry and joint constraints, which is used with inverse kinematics to get the robot joint positions.
You can then send these joint positions as a trajectory to command the robot to move.

Bring up PR2 Gazebo Simulation

This example uses an Ubuntu® virtual machine (VM) containing ROS Melodic available for download
here. This example does not support ROS Noetic as it relies on ROS packages which are only
supported until ROS Melodic.

Spawn PR2 in a simple environment (only with a table and a coke can) in the Gazebo Simulator by
launching the Gazebo PR2 Simulator desktop shortcut from the VM desktop. See “Get Started
with Gazebo and Simulated TurtleBot” (ROS Toolbox) for more details on this process.

Connect to ROS Network from MATLAB®

In your MATLAB instance on the host computer, run the following commands to initialize ROS global
node in MATLAB and connect to the ROS master in the virtual machine through its IP address
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ipaddress. Replace '192.168.233.133' with the IP address of your virtual machine. Specify the port
if needed.

ipaddress = '192.168.116.161';
rosinit(ipaddress,11311);

Initializing global node /matlab_global_node_03004 with NodeURI http://192.168.116.1:64988/

Create Action Clients for Robot Arms and Send Commands

In this task, you send joint trajectories to the PR2 arms. The arms can be controlled via ROS actions.
Joint trajectories are manually specified for each arm and sent as separate goal messages via
separate action clients.

Create a ROS simple action client to send goal messages to move the right arm of the robot. 
rosactionclient (ROS Toolbox) object and goal message are returned. Wait for the client to
connect to the ROS action server.

[rArm, rGoalMsg] = rosactionclient('r_arm_controller/joint_trajectory_action');
waitForServer(rArm);

The goal message is a trajectory_msgs/JointTrajectoryPoint message. Each trajectory point
should specify positions and velocities of the joints.

disp(rGoalMsg)

  ROS JointTrajectoryGoal message with properties:

    MessageType: 'pr2_controllers_msgs/JointTrajectoryGoal'
     Trajectory: [1×1 JointTrajectory]

  Use showdetails to show the contents of the message

disp(rGoalMsg.Trajectory)

  ROS JointTrajectory message with properties:

    MessageType: 'trajectory_msgs/JointTrajectory'
         Header: [1×1 Header]
         Points: [0×1 JointTrajectoryPoint]
     JointNames: {0×1 cell}

  Use showdetails to show the contents of the message

Set the joint names to match the PR2 robot joint names. Note that there are 7 joints to control. To
find what joints are in PR2 right arm, type this command in the virtual machine terminal:

rosparam get /r_arm_controller/joints 

rGoalMsg.Trajectory.JointNames = {'r_shoulder_pan_joint', ...
                                   'r_shoulder_lift_joint', ...
                                   'r_upper_arm_roll_joint', ...
                                   'r_elbow_flex_joint',...
                                   'r_forearm_roll_joint',...
                                   'r_wrist_flex_joint',...
                                   'r_wrist_roll_joint'};
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Create setpoints in the arm joint trajectory by creating ROS trajectory_msgs/
JointTrajectoryPoint messages and specifying the position and velocity of all 7 joints as a vector.
Specify a time from the start as a ROS duration object.

% Point 1
tjPoint1 = rosmessage('trajectory_msgs/JointTrajectoryPoint');
tjPoint1.Positions = zeros(1,7);
tjPoint1.Velocities = zeros(1,7);
tjPoint1.TimeFromStart = rosduration(1.0);

% Point 2
tjPoint2 = rosmessage('trajectory_msgs/JointTrajectoryPoint');
tjPoint2.Positions = [-1.0 0.2 0.1 -1.2 -1.5 -0.3 -0.5];
tjPoint2.Velocities = zeros(1,7);
tjPoint2.TimeFromStart = rosduration(2.0);

Create an object array with the points in the trajectory and assign it to the goal message. Send the
goal using the action client. The sendGoalAndWait (ROS Toolbox) function will block execution until
the PR2 arm finishes executing the trajectory

rGoalMsg.Trajectory.Points = [tjPoint1,tjPoint2];

sendGoalAndWait(rArm,rGoalMsg);
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Create another action client to send commands to the left arm. Specify the joint names of the PR2
robot.

[lArm, lGoalMsg] = rosactionclient('l_arm_controller/joint_trajectory_action');
waitForServer(lArm);

lGoalMsg.Trajectory.JointNames = {'l_shoulder_pan_joint', ...
                                   'l_shoulder_lift_joint', ...
                                   'l_upper_arm_roll_joint', ...
                                   'l_elbow_flex_joint',...
                                   'l_forearm_roll_joint',...
                                   'l_wrist_flex_joint',...
                                   'l_wrist_roll_joint'};

Set a trajectory point for the left arm. Assign it to the goal message and send the goal.

tjPoint3 = rosmessage('trajectory_msgs/JointTrajectoryPoint');
tjPoint3.Positions = [1.0 0.2 -0.1 -1.2 1.5 -0.3 0.5];
tjPoint3.Velocities = zeros(1,7);
tjPoint3.TimeFromStart = rosduration(2.0);

lGoalMsg.Trajectory.Points = tjPoint3;

sendGoalAndWait(lArm,lGoalMsg);
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Calculate Inverse Kinematics for an End-Effector Position

In this section, you calculate a trajectory for joints based on the desired end-effector (PR2 right
gripper) positions. The inverseKinematics class calculates all the required joint positions, which
can be sent as a trajectory goal message via the action client. A rigidBodyTree object is used to
define the robot parameters, generate configurations, and visualize the robot in MATLAB®.

Perform The following steps:

• Get the current state of the PR2 robot from the ROS network and assign it to a rigidBodyTree
object to work with the robot in MATLAB®.

• Define an end-effector goal pose.
• Visualize the robot configuration using these joint positions to ensure a proper solution.
• Use inverse kinematics to calculate joint positions from goal end-effector poses.
• Send the trajectory of joint positions to the ROS action server to command the actual PR2 robot.

Create a Rigid Body Tree in MATLAB®

Load a PR2 robot as a rigidBodyTree object. This object defines all the kinematic parameters
(including joint limits) of the robot.

pr2 = exampleHelperWGPR2Kinect;

Get the Current Robot State

Create a subscriber to get joint states from the robot.

jointSub = rossubscriber('joint_states');

Get the current joint state message.

jntState = receive(jointSub);

Assign the joint positions from the joint states message to the fields of a configuration struct that the
pr2 object understands.

jntPos = exampleHelperJointMsgToStruct(pr2,jntState);

Visualize the Current Robot Configuration

Use show to visualize the robot with the given joint position vector. This should match the current
state of the robot.

show(pr2,jntPos)
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ans = 
  Axes (Primary) with properties:

             XLim: [-2 2]
             YLim: [-2 2]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

Create an inverseKinematics object from the pr2 robot object. The goal of inverse kinematics is
to calculate the joint angles for the PR2 arm that places the gripper (i.e. the end-effector) in a desired
pose. A sequence of end-effector poses over a period of time is called a trajectory.

In this example, we will only be controlling the robot's arms. Therefore, we place tight limits on the
torso-lift joint during planning.
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torsoJoint = pr2.getBody('torso_lift_link').Joint;
idx = strcmp({jntPos.JointName}, torsoJoint.Name);
torsoJoint.HomePosition = jntPos(idx).JointPosition;
torsoJoint.PositionLimits = jntPos(idx).JointPosition + [-1e-3,1e-3];

Create the inverseKinematics object.

ik = inverseKinematics('RigidBodyTree', pr2);

Disable random restart to ensure consistent IK solutions.

ik.SolverParameters.AllowRandomRestart = false;

Specify weights for the tolerances on each component of the goal pose.

weights = [0.25 0.25 0.25 1 1 1];
initialGuess = jntPos; % current jnt pos as initial guess

Specify end-effector poses related to the task. In this example, PR2 will reach to the can on the table,
grasp the can, move it to a different location and set it down again. We will use the
inverseKinematics object to plan motions that smoothly transition from one end-effector pose to
another.

Specify the name of the end effector.

endEffectorName = 'r_gripper_tool_frame';

Specify the can's initial (current) pose and the desired final pose.

TCanInitial = trvec2tform([0.7, 0.0, 0.55]);
TCanFinal = trvec2tform([0.6, -0.5, 0.55]);

Define the desired relative transform between the end-effector and the can when grasping.

TGraspToCan = trvec2tform([0,0,0.08])*eul2tform([pi/8,0,-pi]);

Define the key waypoints of a desired Cartesian trajectory. The can should move along this trajectory.
The trajectory can be broken up as follows:

• Open the gripper
• Move the end-effector from current pose to T1 so that the robot will feel comfortable to initiate

the grasp
• Move the end-effector from T1 to TGrasp (ready to grasp)
• Close the gripper and grab the can
• Move the end-effector from TGrasp to T2 (lift can in the air)
• Move the end-effector from T2 to T3 (move can levelly)
• Move the end-effector from T3 to TRelease (lower can to table surface and ready to release)
• Open the gripper and let go of the can
• Move the end-effector from TRelease to T4 (retract arm)

TGrasp = TCanInitial*TGraspToCan; % The desired end-effector pose when grasping the can
T1 = TGrasp*trvec2tform([0.,0,-0.1]);
T2 = TGrasp*trvec2tform([0,0,-0.2]);
T3 = TCanFinal*TGraspToCan*trvec2tform([0,0,-0.2]);
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TRelease = TCanFinal*TGraspToCan; % The desired end-effector pose when releasing the can
T4 = TRelease*trvec2tform([-0.1,0.05,0]);

The actual motion will be specified by numWaypoints joint positions in a sequence and sent to the
robot through the ROS simple action client. These configurations will be chosen using the
inverseKinematics object such that the end effector pose is interpolated from the initial pose to
the final pose.

Execute the Motion

Specify the sequence of motions.

motionTask = {'Release', T1, TGrasp, 'Grasp', T2, T3, TRelease, 'Release', T4};

Execute each task specified in motionTask one by one. Send commands using the specified helper
functions.

for i = 1: length(motionTask)
    
    if strcmp(motionTask{i}, 'Grasp')
        exampleHelperSendPR2GripperCommand('right',0.0,1000,false); 
        continue
    end
    
    if strcmp(motionTask{i}, 'Release')
        exampleHelperSendPR2GripperCommand('right',0.1,-1,true);
        continue
    end  
    
    Tf = motionTask{i};
    % Get current joint state
    jntState = receive(jointSub);
    jntPos = exampleHelperJointMsgToStruct(pr2, jntState);
    
    T0 = getTransform(pr2, jntPos, endEffectorName);  
    
    % Interpolating between key waypoints
    numWaypoints = 10;
    [s, sd, sdd, tvec] = trapveltraj([0 1], numWaypoints, 'AccelTime', 0.4); % Relatively slow ramp-up to top speed
    TWaypoints = transformtraj(T0, Tf, [0 1], tvec, 'TimeScaling', [s; sd; sdd]); % end-effector pose waypoints
    jntPosWaypoints = repmat(initialGuess, numWaypoints, 1); % joint position waypoints
    
    rArmJointNames = rGoalMsg.Trajectory.JointNames;
    rArmJntPosWaypoints = zeros(numWaypoints, numel(rArmJointNames));
    
    % Calculate joint position for each end-effector pose waypoint using IK
    for k = 1:numWaypoints
        jntPos = ik(endEffectorName, TWaypoints(:,:,k), weights, initialGuess);
        jntPosWaypoints(k, :) = jntPos;
        initialGuess = jntPos;
        
        % Extract right arm joint positions from jntPos
        rArmJointPos = zeros(size(rArmJointNames));
        for n = 1:length(rArmJointNames)
            rn = rArmJointNames{n};
            idx = strcmp({jntPos.JointName}, rn);
            rArmJointPos(n) = jntPos(idx).JointPosition;
        end  
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        rArmJntPosWaypoints(k,:) = rArmJointPos'; 
    end
    
    % Time points corresponding to each waypoint
    timePoints = linspace(0,3,numWaypoints);
        
    % Estimate joint velocity trajectory numerically
    h = diff(timePoints); h = h(1);
    jntTrajectoryPoints = arrayfun(@(~) rosmessage('trajectory_msgs/JointTrajectoryPoint'), zeros(1,numWaypoints)); 
    [~, rArmJntVelWaypoints] = gradient(rArmJntPosWaypoints, h);
    for m = 1:numWaypoints
        jntTrajectoryPoints(m).Positions = rArmJntPosWaypoints(m,:);
        jntTrajectoryPoints(m).Velocities = rArmJntVelWaypoints(m,:);
        jntTrajectoryPoints(m).TimeFromStart = rosduration(timePoints(m));
    end
    
    % Visualize robot motion and end-effector trajectory in MATLAB(R)
    hold on
    for j = 1:numWaypoints
        show(pr2, jntPosWaypoints(j,:),'PreservePlot', false);
        exampleHelperShowEndEffectorPos(TWaypoints(:,:,j));
        drawnow;
        pause(0.1);
    end
    
    % Send the right arm trajectory to the robot
    rGoalMsg.Trajectory.Points = jntTrajectoryPoints;
    sendGoalAndWait(rArm, rGoalMsg);

end
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Wrap Up

Move arm back to starting position.

exampleHelperSendPR2GripperCommand('r',0.0,-1)
rGoalMsg.Trajectory.Points = tjPoint2;
sendGoal(rArm, rGoalMsg);

Call rosshutdown to shutdown ROS network and disconnect from the robot.

rosshutdown

Shutting down global node /matlab_global_node_03004 with NodeURI http://192.168.116.1:64988/
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Plan a Reaching Trajectory With Multiple Kinematic Constraints
This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.

Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

Add a fixed body to the robot model representing the center of the cup.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
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• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.

Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.

heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1
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Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]

Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.

intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;
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Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;

Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.

fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.
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framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));

Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
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    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off

If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');
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Obtain Collision Data for Manipulator Collision Checking
This example shows three ways to obtain a rigidBodyTree model with collision data. To see more
in-depth examples that check for self-collisions or environment collision detection, see these other
examples:

• “Check for Manipulator Self Collisions Using Collision Meshes” on page 1-214
• “Check for Environmental Collisions with Manipulators” on page 1-217
• “Plan and Execute Collision-Free Trajectories Using KINOVA Gen3 Manipulator” on page 1-261
• “Pick-and-Place Workflow Using Stateflow for MATLAB” on page 1-286

URDF Import

Many robots come with collision meshes or primitives specified in the Unified Robot Definition
Format (URDF) file.

The KUKA® IIWA robot comes with a set of collision meshes which are simplified versions of the
visual meshes. Call the importrobotfunction to generate a rigidBodyTree object from the URDF
file. Set the output format for configurations to "column".

iiwa = importrobot("iiwa14.urdf");
iiwa.DataFormat = "column";

Visually inspect the collision meshes of the robot.

show(iiwa,"Visuals","off","Collisions","on");
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Check for Self-Collisions at a Specified Configuration

Specify a configuration that has a self collision. The checkCollision function indicates whether a
robot is colliding with itself in a particular configuration. Visualize the configuration.

config = [0 -pi/4 pi 0.9*pi 0 -pi/2 0]';
checkCollision(iiwa,config)

ans = logical
   1

show(iiwa,config,"Visuals","off","Collisions","on");

Load Provided Models

Robotics System Toolbox™ provides common robot models with collision data accessed using the
loadrobot function.

kukaIiwa14 = loadrobot("kukaIiwa14","DataFormat","column");
checkCollision(kukaIiwa14,config)

ans = logical
   1

config = [0 -pi/4 pi 0.9*pi 0 -pi/2 0]';
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Visualize the robot with the collision meshes visible.

show(kukaIiwa14,config,"Visuals","off","Collisions","on");

Adding Individual Collision Obects

The addCollision function enables you to add collision objects to any rigid body on the robot as
basic shapes (box, sphere,cylinder). You could build your entire robot with these collision geometries,
but this is generally less accurate than higher fidelity mesh definitions.

For this example, notice that the loaded IIWA robot model is missing a gripper. Add a gripper made of
collision primitives to the iiwa_link_ee body on the robot.

addCollision(iiwa.Bodies{end},"cylinder",[0.06,0.05])
addCollision(iiwa.Bodies{end},"box",[0.02,0.02,0.15],trvec2tform([0.03,0,0.05]))
addCollision(iiwa.Bodies{end},"box",[0.02,0.02,0.15],trvec2tform([-0.03,0,0.05]))

Visualize the robot. Notice the gripper is attached.

show(iiwa,"Visuals","off","Collisions","on");
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Check for Manipulator Self Collisions Using Collision Meshes
This example shows how to check for manipulator self-collisions when executing a trajectory. The
collision meshes are loaded via the <collision> tag defined in the URDF of a robot model. The
following related examples show how to load collision data in other ways, and how to check for
environmental collisions:

• “Obtain Collision Data for Manipulator Collision Checking” on page 1-210
• “Check for Environmental Collisions with Manipulators” on page 1-217

Create Robot Representation

Import a URDF file of the KUKA® IIWA-14 serial manipulator as a rigidBodyTree model. The URDF
captures the collision mesh files for the rigid bodies in the robot. To individually add collision objects
to a rigid body, you can use the addCollision function. To load a provided robot model with
collision objects attached, see the loadrobot function.

iiwa = importrobot('iiwa14.urdf');
iiwa.DataFormat = 'column';

Generate Trajectory and Check for Collisions

Specify a start and end configuration as a set of joint positions. These positions should be collision
free.

startConfig = [0 -pi/4 pi 3*pi/2 0 -pi/2 pi/8]';
goalConfig = [0 -pi/4 pi 3*pi/4 0 -pi/2 pi/8]';

Find a joint space trajectory that connects the two configurations within three seconds.

q = trapveltraj([startConfig goalConfig],100,'EndTime',3);

To verify this output trajectory does not contain self-collisions, iterate over the output samples and
see if any points are in collision using the checkCollision function.

While iterating through the trajectory q, call the checkCollision function on every configuration in
the trajectory. Turn on exhaustive checking to continue checking for collisions after the first is
detected.

The isConfigInCollision variable tracks the collision status of each configuration. The
sepDistForConfig tracks the separation distance between the bodies of the robot. For each
collision, the pair of body indices are stored in the configCollisionPairs variable. Note that
neighboring bodies are not checked as they are always in contact via the joint that connects them.

isConfigInCollision = false(100,1);
configCollisionPairs = cell(100,1);
sepDistForConfig = zeros(iiwa.NumBodies+1,iiwa.NumBodies+1,100);
for i = 1:length(q)
    [isColliding, sepDist] = checkCollision(iiwa,q(:,i),'Exhaustive','on');
    isConfigInCollision(i) = isColliding;
    sepDistForConfig(:,:,i) = sepDist;
end

To find out the indices of the bodies in collision, find which entries in the sepDistForConfig are
NaN. septDist is a symmetric matrix, so the same value is returned in indexes with flipped indexes.
Simplify the list by using unique.
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for i = 1:length(q)
    sepDist = sepDistForConfig(:,:,i);
    [body1Idx,body2Idx] = find(isnan(sepDist));

    collidingPairs = unique(sort([body1Idx,body2Idx],2));
    configCollisionPairs{i} = collidingPairs;
end

By inspecting the output, you can see the planned trajectory goes through a series of collisions.
Visualize the configuration where the first collision occurs and highlight the bodies.

any(isConfigInCollision)

ans = logical
   1

firstCollisionIdx = find(isConfigInCollision,1);

% Visualize the first configuration that is in collision.
figure;
show(iiwa,q(:,firstCollisionIdx));
exampleHelperHighlightCollisionBodies(iiwa,configCollisionPairs{firstCollisionIdx}+1,gca);

Generate a Collision-Free Trajectory

This first collision actually occurs at the starting configuration because a joint position is specified
past its limits. Call wrapToPi to limit the starting positions of the joints.
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Generate a new trajectory and check for collisions again.

newStartConfig = wrapToPi(startConfig);
q = trapveltraj([newStartConfig goalConfig],100,'EndTime',3);

isConfigInCollision = false(100,1);
configCollisionPairs = cell(100,1);
for i = 1:length(q)
    isColliding = checkCollision(iiwa,q(:,i),'Exhaustive','on');
    isConfigInCollision(i) = isColliding;
end

After checking the whole trajectory, no collisions are found.

any(isConfigInCollision)

ans = logical
   0
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Check for Environmental Collisions with Manipulators
Generate a collision-free trajectory in a constrained workspace.

Define Collision Environment

Create a simple environment using collision primitives. This example creates a scene where a robot is
in a workspace and has to move objects from one table to another. The robot must also avoid a
circular light fixture above the workspace. Model the tables as two boxes and a sphere and specify
their pose in the world. More complex environments can be created using collisionMesh objects.

% Create two platforms
platform1 = collisionBox(0.5,0.5,0.25);
platform1.Pose = trvec2tform([-0.5 0.4 0.2]);

platform2 = collisionBox(0.5,0.5,0.25);
platform2.Pose = trvec2tform([0.5 0.2 0.2]);

% Add a light fixture, modeled as a sphere
lightFixture = collisionSphere(0.1);
lightFixture.Pose = trvec2tform([.2 0 1]);

% Store in a cell array for collision-checking
worldCollisionArray = {platform1 platform2 lightFixture};

Visualize the environment using a helper function that iterates through the collision array.

ax = exampleHelperVisualizeCollisionEnvironment(worldCollisionArray);
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Add Robot To SEnvironment

Load a Kinova manipulator model as a rigidBodyTree object using the loadrobot function.

robot = loadrobot("kinovaGen3","DataFormat","column","Gravity",[0 0 -9.81]);

Show the robot in the environment using the same axes as the collision objects. The robot base is
fixed to the origin of the world.

show(robot,homeConfiguration(robot),"Parent",ax);
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Generate a trajectory and check for collisions

Define a start and end pose using position and orientation vectors that are combined using
transformation matrix multiplication.

startPose = trvec2tform([-0.5,0.5,0.4])*axang2tform([1 0 0 pi]);
endPose = trvec2tform([0.5,0.2,0.4])*axang2tform([1 0 0 pi]);

Use inverseKinematics to solve for the joint positions based on the desired poses. Inspect
manually to verify that the configurations are valid.

% Use a fixed random seed to ensure repeatable results
rng(0);
ik = inverseKinematics("RigidBodyTree",robot);
weights = ones(1,6);
startConfig = ik("EndEffector_Link",startPose,weights,robot.homeConfiguration);
endConfig = ik("EndEffector_Link",endPose,weights,robot.homeConfiguration);

% Show initial and final positions
show(robot,startConfig);
show(robot,endConfig);
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Use a trapezoidal velocity profile to generate a smooth trajectory from the home position to the start
position, and then to the end position.

q = trapveltraj([homeConfiguration(robot),startConfig,endConfig],200,"EndTime",2);

 

Check for collisions with the obstacles in the environment using the checkCollision function.
Enable the IgnoreSelfCollision nad Exhaustivename-value arguments. Self collisions are
ignored because the robot model joint limits prevent most self collisions. Exhausitive checking
ensures the function calculates all seperation distances and continues searching for collisions after
detecting the first collision.

The sepDist output stores the distances between robot bodies and the world collision objects as a
matrix. Each row corresponds to a specific world collision object. Each column corresponds to a robot
body. Values of NaN indicate a collision. Store the indexes of the collision as a cell array.

% Initialize outputs
inCollision = false(length(q), 1); % Check whether each pose is in collision
worldCollisionPairIdx = cell(length(q),1); % Provide the bodies that are in collision

for i = 1:length(q)
    
    [inCollision(i),sepDist] = checkCollision(robot,q(:,i),worldCollisionArray,"IgnoreSelfCollision","on","Exhaustive","on");
    
    [bodyIdx,worldCollisionObjIdx] = find(isnan(sepDist)); % Find collision pairs
    worldCollidingPairs = [bodyIdx,worldCollisionObjIdx]; 
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    worldCollisionPairIdx{i} = worldCollidingPairs;
    
end
isTrajectoryInCollision = any(inCollision)

isTrajectoryInCollision = logical
   1

Inspect Detected Collisions

From the last step, two collisions are detected. Visualize these configurations to investigate further.
Use the exampleHelperHighlightCollisionBodies function to highlight bodies based on the
indices. You can see a collision occurs at the sphere and the table.

collidingIdx1 = find(inCollision,1);
collidingIdx2 = find(inCollision,1,"last");

% Identify the colliding rigid bodies.
collidingBodies1 = worldCollisionPairIdx{collidingIdx1}*[1 0]';
collidingBodies2 = worldCollisionPairIdx{collidingIdx2}*[1 0]';

% Visualize the environment.
ax = exampleHelperVisualizeCollisionEnvironment(worldCollisionArray);

% Add the robotconfigurations & highlight the colliding bodies.
show(robot,q(:,collidingIdx1),"Parent",ax,"PreservePlot",false);
exampleHelperHighlightCollisionBodies(robot,collidingBodies1 + 1,ax);
show(robot,q(:,collidingIdx2),"Parent"',ax);
exampleHelperHighlightCollisionBodies(robot,collidingBodies2 + 1,ax);
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Generate Collision-Free Trajectory

To avoid these collisions, add intermediate waypoints to ensure the robot navigates around the
obstacle.

intermediatePose1 = trvec2tform([-.3 -.2 .6])*axang2tform([0 1 0 -pi/4]); % Out and around the sphere
intermediatePose2 = trvec2tform([0.2,0.2,0.6])*axang2tform([1 0 0 pi]); % Come in from above

intermediateConfig1 = ik("EndEffector_Link",intermediatePose1,weights,q(:,collidingIdx1));
intermediateConfig2 = ik("EndEffector_Link",intermediatePose2,weights,q(:,collidingIdx2));

% Show the new intermediate poses
ax = exampleHelperVisualizeCollisionEnvironment(worldCollisionArray);
show(robot,intermediateConfig1,"Parent",ax,"PreservePlot",false);
show(robot,intermediateConfig2,"Parent",ax);
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Generate a new trajectory.

[q,qd,qdd,t] = trapveltraj([homeConfiguration(robot),intermediateConfig1,startConfig,intermediateConfig2,endConfig],200,"EndTime",2);

Verify that it is collision-free.

%Initialize outputs
inCollision = false(length(q),1); % Check whether each pose is in collision
for i = 1:length(q)
    inCollision(i) = checkCollision(robot,q(:,i),worldCollisionArray,"IgnoreSelfCollision","on");
end
isTrajectoryInCollision = any(inCollision)

isTrajectoryInCollision = logical
   0

Visualize the Generated Trajectory

Animate the result.

% Plot the environment
ax2 = exampleHelperVisualizeCollisionEnvironment(worldCollisionArray);

% Visualize the robot in its home configuration
show(robot,startConfig,"Parent",ax2);

% Update the axis size
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axis equal

% Loop through the other positions
for i = 1:length(q)
    show(robot,q(:,i),"Parent",ax2,"PreservePlot",false);
    
    % Update the figure    
    drawnow
end

Plot the joint positions over time.

figure
plot(t,q)
xlabel("Time")
ylabel("Joint Position")

1 Robotics System Toolbox Examples

1-224



 Check for Environmental Collisions with Manipulators

1-225



Visualize Manipulator Trajectory Tracking with Simulink 3D
Animation

Simulate joint-space trajectories for a rigid body tree robot model and visualize the results with
Simulink 3D Animation™.

Model Overview

Load the model with the following command:

open_system("SL3DJointSpaceManipulatorTrajectory")

This example uses a Kinova Gen3 manipulator, which is stored in the model workspace. However, load
and visualize the robot with the following commands:

gen3 = loadrobot("kinovaGen3","DataFormat","column");
show(gen3);
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The model is split into two sections:

• Manipulator Trajectory Tracking
• Visualization in Simulink 3D Animation™

Manipulator Trajectory Tracking

The Polynomial Trajectory block generates continuous joint-space trajectories from random sets of
waypoints in the range [-0.375*pi 0.375*pi], stopping at each of the waypoints. The Joint-
Space Motion Model block simulates the closed-loop tracking of these trajectories for a Kinova
Gen3 manipulator with computed-torque control.
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Visualization in Simulink 3D Animation™

The VR RigidBodyTree block inserts the manipulator into the scene defined by the associated world
file, robot_scene.wrl. The VR Sink block provides a visualization for the world. In the block
parameters, the VR Sink block has been modified to treat the setpoint, indicated by the red axes in
the output, as an input. The Get Transform block is used to get the position of the end effector,
which is then converted from a homogeoneous transform matrix to a translation vector, and then from
MATLAB to VR coordinates.

Simulate the Model

sim("SL3DJointSpaceManipulatorTrajectory.slx");
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In the model, pacing is active, as indicated by the clock symbol below the run button:

This ensures that the model is slowed down to near real-time speed, so that the visualization can be
updated at a realistic pace.

Trajectory Visualization

By default, the model opens both the VR visualization and the scopes that display velocity and
position information. However, if they are closed, the VR view can be reopened by clicking on the VR
Sink block, and the scopes can be opened by double-clicking the associated viewer icons:
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The scopes show the tracking results of the Joint Space Motion Model block. As can be seen on the
left in the figures below, the initial configuration of the robot differs from the reference trajectories,
but the controlled motion ensures that the trajectory is reached and tracked for the duration of the
simulation. The final scope displays the X, Y, and Z position of the end effector in the world frame.
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Compute Joint Torques To Balance An Endpoint Force and
Moment

Generate torques to balance an endpoint force acting on the end-effector body of a planar robot. To
calculate the joint torques using various methods, use the geometricJacobian and
inverseDynamics object functions for a rigidBodyTree robot model.

Initialize Robot

The twoJointRigidBodyTree robot is a 2-D planar robot. Joint configurations are output as column
vectors.

twoJointRobot = twoJointRigidBodyTree("column");

Problem Setup

The endpoint force eeForce is a column vector with a combination of the linear force and moment
acting on the end-effector body ("tool"). Note that this vector is expressed in the base coordinate
frame and is shown below.

fx = 2; 
fy = 2;
fz = 0;
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nx = 0;
ny = 0;
nz = 3;
eeForce = [nx;ny;nz;fx;fy;fz];
eeName = "tool";

Specify the joint configuration of the robot for the balancing torques.

q = [pi/3;pi/4];
Tee = getTransform(twoJointRobot,q,eeName);

Geometric Jacobian Method

Using the principle of virtual work [1], find the balancing torque using the geometricJacobian
object function and multiplying the transpose of the Jacobian by the endpoint force vector.

J = geometricJacobian(twoJointRobot,q,eeName);
jointTorques = J' * eeForce;
fprintf("Joint torques using geometric Jacobian (Nm): [%.3g, %.3g]",jointTorques);

Joint torques using geometric Jacobian (Nm): [1.41, 1.78]

Inverse Dynamics for Spatially-Transformed Force

Using another method, calculate the balancing torque by computing the inverse dynamics with the
endpoint force spatially transformed to the base frame.

Spatially transforming a wrench from the end-effector frame to the base frame means to exert a new
wrench in a frame that happens to collocate with the base frame in space, but is still fixed to the end-
effector body; this new wrench has the same effect as the original wrench exerted at the ee origin. In
the figure below, fext and next  are the endpoint linear force and moment respectively, and the fee

base

and neebase are the spatially transformed forces and moments, respectively. In the snippet below,
fbase_ee is the spatially transformed wrench.
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r = tform2trvec(Tee);
fbase_ee = [cross(r,[fx fy fz])' + [nx;ny;nz]; fx;fy;fz];
fext = -externalForce(twoJointRobot, eeName, fbase_ee);
jointTorques2 = inverseDynamics(twoJointRobot, q, [], [], fext);
fprintf("Joint torques using inverse dynamics (Nm): [%.3g, %.3g]",jointTorques2)

Joint torques using inverse dynamics (Nm): [1.41, 1.78]

Inverse Dynamics for End-Effector Force

Instead of spatially transforming the endpoint force to the base frame, use a third method by
expressing the end-effector force in its own coordinate frame (fee_ee). Transform the moment and
the linear force vectors into the end-effector coordinate frame. Then, specify that force and the
current configuration to the externalForce function. Calculate the inverse dynamics from this
force vector.

eeLinearForce = Tee \ [fx;fy;fz;0];
eeMoment = Tee \ [nx;ny;nz;0];
fee_ee = [eeMoment(1:3); eeLinearForce(1:3)];
fext = -externalForce(twoJointRobot,eeName,fee_ee,q);
jointTorques3 = inverseDynamics(twoJointRobot, q, [], [], fext);
fprintf("Joint torques using inverse dynamics (Nm): [%.3g, %.3g]",jointTorques3);

Joint torques using inverse dynamics (Nm): [1.41, 1.78]
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Simulate Joint-Space Trajectory Tracking in MATLAB
This example shows how to simulate the joint-space motion of a robotic manipulator under closed-
loop control.

Define Robot and Initial State

Load an ABB IRB-120T from the robot library using the loadrobot function.

robot = loadrobot("abbIrb120T","DataFormat","column","Gravity",[0 0 -9.81]);
numJoints = numel(homeConfiguration(robot));

Define simulation parameters, including the time range over which the trajectory is simulated, the
initial state as [joint configuration; jointVelocity], and the joint-space set point.

% Set up simulation parameters
tSpan = 0:0.01:0.5;
q0 = zeros(numJoints,1);
q0(2) = pi/4; % Something off center
qd0 = zeros(numJoints,1);
initialState = [q0; qd0];

% Set up joint control targets
targetJointPosition = [pi/2 pi/3 pi/6 2*pi/3 -pi/2 -pi/3]';
targetJointVelocity = zeros(numJoints,1);
targetJointAcceleration = zeros(numJoints,1);

Visualize the goal position.

show(robot,targetJointPosition)
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ans = 
  Axes (Primary) with properties:

             XLim: [-1 1]
             YLim: [-1 1]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

Model Behavior with Joint-Space Control

Using a jointSpaceMotionModel object, simulate the closed-loop motion of the model under a
variety of controllers. This example compares a few of them. Each instance uses the derivative
function to compute the state derivative. Here, the state is 2n-element vector [joint
configuration; joint velocity], where n is the number of joints in the associated
rigidBodyTree object.

Computed-Torque Control

Computed-torque control uses an inverse-dynamics computation to compensate for the robot
dynamics. The controller drives the closed-loop error dynamics of each joint based on a second-order
response.
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Create a jointSpaceMotionModel and specify the robot model. Set the "MotionType" to
"ComputedTorqueControl". Update the error dynamics using updateErrorDynamicsFromStep
and specify the desired settling time and overshoot respectively. Alternatively, you can set the
damping ratio and natural frequency directly in the object.

computedTorqueMotion = jointSpaceMotionModel("RigidBodyTree",robot,"MotionType","ComputedTorqueControl");
updateErrorDynamicsFromStep(computedTorqueMotion,0.2,0.1);

This motion model requires position, velocity, and acceleration to be provided.

qDesComputedTorque = [targetJointPosition; targetJointVelocity; targetJointAcceleration];

To view an example of this controller in practice in Simulink, see the “Perform Safe Trajectory
Tracking Control Using Robotics Manipulator Blocks” on page 1-268 example.

Independent Joint Control

With independent joint control, model each joint as a separate system that has a second-order
tracking response. This type of model is an idealized behavior, and is best used when the response is
slow, or when the dynamics will not have a significant impact on the resultant trajectory. In those
cases, it will behave the same as computed-torque control, but with less computational overhead.

Create another joinSpaceMotionModel using the "IndependentJointMotion" motion type.

IndepJointMotion = jointSpaceMotionModel("RigidBodyTree",robot,"MotionType","IndependentJointMotion");
updateErrorDynamicsFromStep(IndepJointMotion,0.2,0.1);

This motion model requires position, velocity, and acceleration to be provided.

qDesIndepJoint = [targetJointPosition; targetJointVelocity; targetJointAcceleration];

Proportional-Derivative Control

Proportional-Derivative Control, or PD Control, combines gravity compensation with proportional and
derivative gains. Despite the simpler nature relative to other closed-form models, the PD Controller
can be stable for all positive gain values, which makes it a desirable option. Here, the PD Gains are
set as n-by-n matrices, where n is the number of joints in the associated rigidBodyTree object. For
this robot, n = 6. Additionally, PD Control does not require an acceleration profile, so its state vector
is just a 2n-element vector of joint configurations and joint velocities.

pdMotion = jointSpaceMotionModel("RigidBodyTree",robot,"MotionType","PDControl");
pdMotion.Kp = diag(300*ones(1,6));
pdMotion.Kd = diag(10*ones(1,6));

This motion model requires position and velocity to be provided.

qDesPD = [targetJointPosition; targetJointVelocity];

Simulate using an ODE Solver

The derivative function outputs the state derivative, which can be integrated using an ordinary
differential equation (ODE) solver such as ode45. For each motion model, the ODE solver outputs a
m-element column vector that covers tspan and a 2-by-m matrix of the 2n-element state vector at
each instant in time.

Calculate the trajectory for each motion model, using the most appropriate ODE solver for each
system.
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[tComputedTorque,yComputedTorque] = ode45(@(t,y)derivative(computedTorqueMotion,y,qDesComputedTorque),tSpan,initialState);
[tIndepJoint,yIndepJoint] = ode45(@(t,y)derivative(IndepJointMotion,y,qDesIndepJoint),tSpan,initialState);
[tPD,yPD] = ode15s(@(t,y)derivative(pdMotion,y,qDesPD),tSpan,initialState);

Plot Results

Once the simulation is complete, compare the results side-by-side. Each plot shows the joint position
on the top, and velocity on the bottom. The dashed lines indicate the reference trajectories, while the
solid lines display the simulated response.

% Computed Torque Control
figure
subplot(2,1,1)
plot(tComputedTorque,yComputedTorque(:,1:numJoints)) % Joint position
hold all
plot(tComputedTorque,targetJointPosition*ones(1,length(tComputedTorque)),'--') % Joint setpoint
title('Computed Torque Motion: Joint Position')
xlabel('Time (s)')
ylabel('Position (rad)')
subplot(2,1,2)
plot(tComputedTorque,yComputedTorque(:,numJoints+1:end)) % Joint velocity
title('Joint Velocity')
xlabel('Time (s)')
ylabel('Velocity (rad/s)')

In the following plot, use independent joint control to confirm that the computed torque motion
behaves equivalently under some simplifying assumptions.
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% Independent Joint Motion
figure
subplot(2,1,1)
plot(tIndepJoint,yIndepJoint(:,1:numJoints))
hold all
plot(tIndepJoint,targetJointPosition*ones(1,length(tIndepJoint)),'--')
title('Independent Joint Motion: Position')
xlabel('Time (s)')
ylabel('Position (rad)')
subplot(2,1,2);
plot(tIndepJoint,yIndepJoint(:,numJoints+1:end))
title('Joint Velocity')
xlabel('Time (s)')
ylabel('Velocity (rad/s)')

Finally, the PD Controller uses fairly aggressive gains to achieve similar rise times, but unlike the
other approaches, the individual joints behave differently, since each joint and the associated bodies
have slightly different dynamic properties that are not compensated by the controller.

% PD with Gravity Compensation
figure
subplot(2,1,1)
plot(tPD,yPD(:,1:numJoints))
hold all
plot(tPD,targetJointPosition*ones(1,length(tPD)),'--')
title('PD Controlled Joint Motion: Position')
xlabel('Time (s)')
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ylabel('Position (rad)')
subplot(2,1,2)
plot(tPD,yPD(:,numJoints+1:end))
title('Joint Velocity')
xlabel('Time (s)')
ylabel('Velocity (rad/s)')

Visualize the Trajectories as an Animation

To see what this behavior looks like in 3-D, the following example helper plots the robot motion in
time. The third input is the number of frames between each sample.

exampleHelperRigidBodyTreeAnimation(robot,yComputedTorque,1);
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exampleHelperRigidBodyTreeAnimation(robot,yIndepJoint,1);

 Simulate Joint-Space Trajectory Tracking in MATLAB

1-243



exampleHelperRigidBodyTreeAnimation(robot,yPD,1);
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Model and Control a Manipulator Arm with Robotics and
Simscape

Execute a pick-and-place workflow using an ABB YuMi robot, which demonstrates how to design
robot algorithms in Simulink®, and then simulate the action in a test environment using Simscape™.
The example also shows how to model a system with different levels of fidelity to focus on better
focus on the associated algorithm design.

The design elements of this example are split into three sections to more easily focus on different
aspects of the model design:

1 Create a Task & Trajectory Scheduler for Pick-And-Place using Simplified Manipulator
System Dynamics:

2 Add Core Manipulator Dynamics and Design a Controller
3 Verify Complete Workflow on Simscape Model of the Robot and Environment

High Level Goals

In the “Interactively Build a Trajectory for an ABB YuMi Robot” on page 1-156 example, a robot
waypoint sequence was designed and replayed using a continuous trajectory. In this example,
Simulink models convert these waypoints to a complete and repeatable pick-and-place workflow. The
model has the two key elements:

The task scheduling and trajectory generation portion defines how the robot traverses through the
states. This includes the robot configuration state at any instant, what the goal position is, whether
the gripper should be open or closed, and the current trajectory being sent to the robot.

The system dynamics portion models the robot behavior. This defines how the robot moves given a set
of reference trajectories and a boolean gripper command (open or closed). The system dynamics can
be modeled with different levels of fidelity, depending on the aim of the overall model.

For this example, during the task scheduler design, the aim is to ensure the scheduler behaves
correctly under the assumption that the robot is under stable motion control. For this portion, a
straightforward model that simulates quickly desirable, so the system dynamics are modeld using the
Joint Space Motion Model block. This block simulates the manipulator motion given joint-space
reference trajectories under a stable controller with predefined response parameters. Once the task
scheduling is complete, the focus of the model is shifted to controller design and system verification,
which requires more complex system dynamics models.
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Define a Robot and Environment

Load an ABB YuMi robot model. The robot is an industrial manipulator with two arms. This example
only uses a single arm.

robot = loadrobot('abbYumi','Gravity',[0 0 -9.81]);

Create a visualization to replay simulated trajectories.

iviz = interactiveRigidBodyTree(robot);
ax = gca;

Add an environment by creating a set of collision objects using an example helper function.

exampleHelperSetupWorkspace(ax);

Initialize Shared Simulation Parameters

This example uses a set of predefined configurations, configSequence, as robot states. These are
stored in an associated MAT file and were initially defined in “Interactively Build a Trajectory for an
ABB YuMi Robot” on page 1-156.

load abbSavedConfigs.mat configSequence

For the simulation, the initial state of the robot must be defined including postion, velocity, and
acceleration of each joint.

% Define initial state
q0 = configSequence(:,1); % Position
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dq0 = zeros(size(q0)); % Velocity
ddq0 = zeros(size(q0)); % Acceleration

Create a Task & Trajectory Scheduler

Load the first model, which focuses on the task scheduling and trajectory generation section of the
model.

open_system('modelWithSimplifiedSystemDynamics.slx');

Simplified System Dynamics

To focus on the scheduling portion of the model, the system dynamics are modeled using the Joint
Space Motion Model block. This motion model assumes the robot can reach specified configurations
under stable, accurate control. Later, the example details more accurate modelling of the system
dynamics.

The gripper is modeled as a simple Boolean command input as 0 or 1 (open or closed), and an output
that indicates whether the gripper achieved the commanded position. Typically, robots treat the
gripper command separately from the other configuration inputs.

Task Scheduling

The series of tasks the robot through are eight states:
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The scheduler is implemented using a MATLAB Function block, commandLogic. The scheduler
advances states when the gripper state is reached and all the manipulator joints have reached their
target positions within a predefined threshold. Each task is input to the Trapezoidal Velocity Profile
Trajectory block which generates a smooth trajectory between each waypoint.

Simulate the Model

The provided Simulink model stores variables relevant to the example in the Model Workspace. Click
Load Default Parameters to reinitialize the variables if needed. For more information, see “Model
Workspaces” (Simulink).

Run the model by calling sim.

Use the interactive visualization to play back the motion. The model is simulated for a few extra
seconds to ensure that the cycle loops as expected after the first motion. This model does not
simulate any environment interaction, so the robot does not actually grab objects in this simulation.
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simout = sim('modelWithSimplifiedSystemDynamics.slx');

% Visualize the motion using the interactiveRigidBodyTree object.
iviz.ShowMarker = false;
iviz.showFigure;
rateCtrlObj = rateControl(length(simout.tout)/(max(simout.tout)));
for i = 1:length(simout.tout)
    iviz.Configuration = simout.yout{1}.Values.Data(i,:);
    waitfor(rateCtrlObj);
end

Add Core Manipulator Dynamics and Design a Controller

Now that the scheduler has been designed and verified, add a controller for the robot with two
elements

• A more complex manipulator dynamics model that accepts joint torques and gripper commands
• A joint-space controller that returns joint torques given desired and current manipulator states

Open the next provided model with the added controller.

open_system('modelWithControllerAndBasicRobotDynamics.slx');
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Manipulator Dynamics

For the purpose of designing a controller, the manipulator dynamics have to represent the
manipulator joint positions given torque inputs. This is achieved inside the Manipulator Dynamics
subsystem using a Forward Dynamics block to convert joint torques to joint acceleration given the
current state, and then integrating twice to get the complete joint configuration. The integrators are
initialized to q0 and dq0, the initial joint position and velocity.

Additionally, the gripper control subsystem overrides the joint control torques to the gripper
actuators with 10 N of force that is applied to close or open the gripper.

Note that the second integrator is saturated.

While manipulators under well-designed position controllers typically will not reach joint limits, the
addition of open-loop forces from the gripper action mean that joint limits are required to ensure a
realistic response. For a more accurate model, the joint saturation could be connected to the velocity
to reset integration, but for this model, this level of accuracy is sufficient.
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Gripper Sensor

This model also adds a more detailed gripper sensor to check when the gripper has actually been
opened or closed. The gripper sensor extracts the last two values of the joint configuration (the
values that correspond to the gripper position), and compares them to the intended gripper position,
given by the closeGripper command, in a MATLAB Function block, Gripper Logic. The Gripper
Status returns 1 when the positions of the gripper joints match the desired state given by the
closeGripper command. When the gripper has not yet reached those states, Gripper Status returns
zero. This matches the behavior of the Gripper Model in the earlier, simplified model.

Joint-Space Controller
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This model also adds a computed torque controller which implements a model-based approach to
joint control. For more details, see Build Computed Torque Controller Using Robotics Manipulator
Blocks in the “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page
1-268 example. This model uses the same controller, but with the ABB YuMi as the rigidBodyTree
input rather than the Rethink Sawyer.

Simulate the Model

Simulate and visualize the results using the new model.

simout = sim('modelWithControllerAndBasicRobotDynamics.slx');

% Visualize the motion using the interactiveRigidBodyTree
iviz.ShowMarker = false;
iviz.showFigure;
rateCtrlObj = rateControl(length(simout.tout)/(max(simout.tout)));
for i = 1:length(simout.tout)
    iviz.Configuration = simout.yout{1}.Values.Data(i,:);
    waitfor(rateCtrlObj);
end

Verify Complete Workflow on Simscape Model of the Robot and Environment

Now that the task scheduler and controller have been designed, add more complex robot and
environment models. Use Simscape Multibody™ which can create high-fidelity models of physical
systems. In this application, Simscape adds dynamics with built-in joint limits and contact modeling.
This last step adds simulation accuracy at the cost of modeling complexity and simulation speed.
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Simscape also provides a built-in visualization, Mechanics Explorer, that can be viewed during and
after simulation.

Load the final provided model, which has the same top view.

open_system('modelWithSimscapeRobotAndEnvironmentDynamics.slx');

Simscape Robot & Environment Plant

This main different from the previous model is the plant model. The core manipulator dynamics from
the previous model have been replaced with a Simscape model for the robot and the environment:

Manipulator & Environment Dynamics

The manipulator and environment are constructed using Simscape Multibody. The robot model was
created by calling smimport on the robot URDF file with the provided meshes. Then, the joints were
actuated with joint torques by linking via muxes and GoTo tags and outfitted with sensors that
return joint position, velocity, and acceleration.

The objects,or widgets, are actually picked up in this simulation, so define the widget size.
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widgetDimensions = [0.02 0.02 0.07];

Contact Models

The contact in this model is split into two categories:

• Contact between the gripper and the widget
• Contact between the widget and the environment

In both cases, contact proxies are used in lieu of direct surface-to-surface contact. The use of contact
proxies speed up modeling to improve performance. For the gripper-widget contact, the gripper
contacts are modeled using two brick solids, while eight spherical contacts are used to model the
widget interface. Similarly, the widget-to-environment contact uses spheres at each of the four
corners of the widget that contact the brick solids representing the environment.

Define the parameters for the contact models to be close to their default states.

% Contact parameters
stiffness = 1e4;
damping = 30;
transition_region_width = 1e-4;
static_friction_coef = 1;
kinetic_friction_coef = 1;
critical_velocity = 1;

Gripper Control & Sensing

The Gripper Control is the same, but the Gripper Sensor is modified. Since this gripper can
actually pick up objects, the closed gripper state is reached when the grasp is firm. The actual closed
position may never be reached. Therefore, extra logic has been added that returns a value,
isGrippingObj, that is true when both the left and right gripper reaction forces exceed a threshold
value. The Gripper Logic MATLAB Function block accepts this variable as an input.

Simulate the Model

Simulate the robot. Due to the high complexity, this may take several minutes.

simout = sim('modelWithSimscapeRobotAndEnvironmentDynamics.slx');

Use the Mechanics Explorer to visualize the performance during and after simulation.

 Model and Control a Manipulator Arm with Robotics and Simscape

1-255



Extensibility

This example has focused on the design of a scheduling and control system for a pick-and-place
application. Further investigations might include the effect of sampling on the controller, the impact
of unexpected contact using Simscape Multibody, or the extension to a multi-domain model like
detailing the behavior of the electrical motors that the robot uses.
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Plan and Execute Task- and Joint-Space Trajectories Using
KINOVA Gen3 Manipulator

This example shows how to generate and simulate interpolated joint trajectories to move from an
initial to a desired end-effector pose. The timing of the trajectories is based on an approximate
desired end of arm tool (EOAT) speed.

Load the KINOVA Gen3 rigid body tree (RBT) robot model.

robot = loadrobot('kinovaGen3','DataFormat','row','Gravity',[0 0 -9.81]);

Set current robot joint configuration.

currentRobotJConfig = homeConfiguration(robot);

Get number of joints and the end-effector RBT frame.

numJoints = numel(currentRobotJConfig);
endEffector = "EndEffector_Link";

Specify the trajectory time step and approximate desired tool speed.

timeStep = 0.1; % seconds
toolSpeed = 0.1; % m/s

Set the initial and final end-effector pose.

jointInit = currentRobotJConfig;
taskInit = getTransform(robot,jointInit,endEffector);

taskFinal = trvec2tform([0.4,0,0.6])*axang2tform([0 1 0 pi]);

Generate Task-Space Trajectory

Compute task-space trajectory waypoints via interpolation.

First, compute tool traveling distance.

distance = norm(tform2trvec(taskInit)-tform2trvec(taskFinal));

Next, define trajectory times based on traveling distance and desired tool speed.

initTime = 0;
finalTime = (distance/toolSpeed) - initTime;
trajTimes = initTime:timeStep:finalTime;
timeInterval = [trajTimes(1); trajTimes(end)];

Interpolate between taskInit and taskFinal to compute intermediate task-space waypoints.

[taskWaypoints,taskVelocities] = transformtraj(taskInit,taskFinal,timeInterval,trajTimes); 

Control Task-Space Motion

Create a joint space motion model for PD control on the joints. The taskSpaceMotionModel object
models the motion of a rigid body tree model under task-space proportional-derivative control.

tsMotionModel = taskSpaceMotionModel('RigidBodyTree',robot,'EndEffectorName','EndEffector_Link');
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Set the proportional and derivative gains on orientation to zero, so that controlled behavior just
follows the reference positions:

tsMotionModel.Kp(1:3,1:3) = 0;
tsMotionModel.Kd(1:3,1:3) = 0;

Define the initial states (joint positions and velocities).

q0 = currentRobotJConfig; 
qd0 = zeros(size(q0));

Use ode15s to simulate the robot motion. For this problem, the closed-loop system is stiff, meaning
that there is a difference in scaling somewhere in the problem. As a result, the integrator is
sometimes forced to take exceedingly small steps, and a non-stiff ODE solver such as ode45 will take
much longer to solve the same problem. For more information, refer to “Choose an ODE Solver” and
“Solve Stiff ODEs” in the documentation.

Since the reference state changes at each instant, a wrapper function is required to update the
interpolated trajectory input to the state derivative at each instant. Therefore, an example helper
function is passed as the function handle to the ODE solver. The resultant manipulator states are
output in stateTask.

[tTask,stateTask] = ode15s(@(t,state) exampleHelperTimeBasedTaskInputs(tsMotionModel,timeInterval,taskInit,taskFinal,t,state),timeInterval,[q0; qd0]);

Generate Joint-Space Trajectory

Create a inverse kinematics object for the robot.

ik = inverseKinematics('RigidBodyTree',robot);
ik.SolverParameters.AllowRandomRestart = false;
weights = [1 1 1 1 1 1];

Calculate the initial and desired joint configurations using inverse kinematics. Wrap the values to pi
to ensure that interpolation is over a minimal domain.

initialGuess = jointInit;
jointFinal = ik(endEffector,taskFinal,weights,initialGuess);

By default, the IK solution respects joint limits. However for continuous joints (revolute joints with
infinite range), the resultant values may be unnecessarily large and can be wrapped to [-pi, pi] to
ensure that the final trajectory covers a minimal distance. Since non-continuous joints for the Gen3
already have limits within this interval, it is sufficient to simply wrap the joint values to pi. The
continuous joints will be mapped to the interval [-pi, pi], and the other values will remain the
same.

wrappedJointFinal = wrapToPi(jointFinal);

Interpolate between them using a cubic polynomial function to generate an array of evenly-spaced
joint configurations. Use a B-spline to generate a smooth trajectory.

ctrlpoints = [jointInit',wrappedJointFinal'];
jointConfigArray = cubicpolytraj(ctrlpoints,timeInterval,trajTimes);
jointWaypoints = bsplinepolytraj(jointConfigArray,timeInterval,1);
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Control Joint-Space Trajectory

Create a joint space motion model for PD control on the joints. The jointSpaceMotionModel object
models the motion of a rigid body tree model and uses proportional-derivative control on the specified
joint positions.

jsMotionModel = jointSpaceMotionModel('RigidBodyTree',robot,'MotionType','PDControl');

Set initial states (joint positions and velocities).

q0 = currentRobotJConfig; 
qd0 = zeros(size(q0));

Use ode15s to simulate the robot motion. Again, an example helper function is used as the function
handle input to the ODE solver in order to update the reference inputs at each instant in time. The
joint-space states are output in stateJoint.

[tJoint,stateJoint] = ode15s(@(t,state) exampleHelperTimeBasedJointInputs(jsMotionModel,timeInterval,jointConfigArray,t,state),timeInterval,[q0; qd0]);

Visualize and Compare Robot Trajectories

Show the initial configuration of the robot.

show(robot,currentRobotJConfig,'PreservePlot',false,'Frames','off');
hold on
axis([-1 1 -1 1 -0.1 1.5]);

Visualize the task-space trajectory. Iterate through the stateTask states and interpolate based on
the current time.

for i=1:length(trajTimes)
    % Current time 
    tNow= trajTimes(i);
    % Interpolate simulated joint positions to get configuration at current time
    configNow = interp1(tTask,stateTask(:,1:numJoints),tNow);
    poseNow = getTransform(robot,configNow,endEffector);
    show(robot,configNow,'PreservePlot',false,'Frames','off');
    taskSpaceMarker = plot3(poseNow(1,4),poseNow(2,4),poseNow(3,4),'b.','MarkerSize',20);
    drawnow;
end

Visualize the joint-space trajectory. Iterate through the jointTask states and interpolate based on
the current time.

% Return to initial configuration
show(robot,currentRobotJConfig,'PreservePlot',false,'Frames','off');

for i=1:length(trajTimes)
    % Current time 
    tNow= trajTimes(i);
    % Interpolate simulated joint positions to get configuration at current time
    configNow = interp1(tJoint,stateJoint(:,1:numJoints),tNow);
    poseNow = getTransform(robot,configNow,endEffector);
    show(robot,configNow,'PreservePlot',false,'Frames','off');
    jointSpaceMarker = plot3(poseNow(1,4),poseNow(2,4),poseNow(3,4),'r.','MarkerSize',20);
    drawnow;
end
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% Add a legend and title
legend([taskSpaceMarker jointSpaceMarker], {'Defined in Task-Space', 'Defined in Joint-Space'});
title('Manipulator Trajectories')
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Plan and Execute Collision-Free Trajectories Using KINOVA
Gen3 Manipulator

This example shows how to plan closed-loop collision-free robot trajectories from an initial to a
desired end-effector pose using nonlinear model predictive control. The resulting trajectories are
executed using a joint-space motion model with computed torque control. Obstacles can be static or
dynamic, and can be either set as primitives (spheres, cylinders, boxes) or as custom meshes.

Robot Description and Poses

Load the KINOVA Gen3 rigid body tree (RBT) model.

robot = loadrobot('kinovaGen3', 'DataFormat', 'column');

Get the number of joints.

numJoints = numel(homeConfiguration(robot));

Specify the robot frame where the end-effector is attached.

endEffector = "EndEffector_Link"; 

Specify initial and desired end-effector poses. Use inverse kinematics to solve for the initial robot
configuration given a desired pose.

% Initial end-effector pose
taskInit = trvec2tform([[0.4 0 0.2]])*axang2tform([0 1 0 pi]);

% Compute current robot joint configuration using inverse kinematics
ik = inverseKinematics('RigidBodyTree', robot);
ik.SolverParameters.AllowRandomRestart = false;
weights = [1 1 1 1 1 1];
currentRobotJConfig = ik(endEffector, taskInit, weights, robot.homeConfiguration);

% The IK solver respects joint limits, but for those joints with infinite
% range, they must be wrapped to a finite range on the interval [-pi, pi].
% Since the the other joints are already bounded within this range, it is
% sufficient to simply call wrapToPi on the entire robot configuration
% rather than only on the joints with infinite range.
currentRobotJConfig = wrapToPi(currentRobotJConfig);

% Final (desired) end-effector pose
taskFinal = trvec2tform([0.35 0.55 0.35])*axang2tform([0 1 0 pi]);  
anglesFinal = rotm2eul(taskFinal(1:3,1:3),'XYZ');
poseFinal = [taskFinal(1:3,4);anglesFinal']; % 6x1 vector for final pose: [x, y, z, phi, theta, psi]

Collision Meshes and Obstacles

To check for and avoid collisions during control, you must setup a collision world as a set of collision
objects. This example uses collisionSphere objects as obstacles to avoid. Change the following
boolean to plan using static instead of moving obstacles.

isMovingObst = true;

The obstacle sizes and locations are initialized in the following helper function. To add more static
obstacles, add collision objects in the world array.
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helperCreateObstaclesKINOVA;

Visualize the robot at the initial configuration. You should see the obstacles in the environment as
well.

x0 = [currentRobotJConfig', zeros(1,numJoints)];
helperInitialVisualizerKINOVA;

Specify a safety distance away from the obstacles. This value is used in the inequality constraint
function of the nonlinear MPC controller.

safetyDistance = 0.01; 

Design Nonlinear Model Predictive Controller

You can design the nonlinear model predictive controller using the following helper file, which
creates an nlmpc (Model Predictive Control Toolbox) controller object. To views the file, type edit
helperDesignNLMPCobjKINOVA.

helperDesignNLMPCobjKINOVA;

The controller is designed based on the following analysis. The maximum number of iterations for the
optimization solver is set to 5. The lower and upper bounds for the joint position and velocities
(states), and accelerations (control inputs) are set explicitly.
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• The robot joints model is described by double integrators. The states of the model are x = [q, q̇],
where the 7 joint positions are denoted by q and their velocities are denoted by q̇. The inputs of
the model are the joint accelerations u = q̈. The dynamics of the model are given by

ẋ =
0 I7
0 0

x +
0
I7

u

where I7 denotes the 7 × 7 identity matrix. The output of the model is defined as

y = I7 0 x.

Therefore, the nonlinear model predictive controller (nlobj) has 14 states, 7 outputs, and 7 inputs.

• The cost function for nlobj is a custom nonlinear cost function, which is defined in a manner
similar to a quadratic tracking cost plus a terminal cost.

J = ∫0T pref − p q t ′Qr pref − p q t + u′ t Quu t dt + pref − p q T ′Qt pref − p q T
+ q̇′ T Qvq̇ T

Here, p q t  transforms the joint positions q t  to the frame of end effector using forward kinematics
and getTransform, and pref denotes the desired end-effector pose.

The matrices Qr, Qu, Qt, and Qv are constant weight matrices.

• To avoid collisions, the controller has to satisfy the following inequality constraints.

di, j ≥ dsafe

Here, di, j denotes the distance from the i-th robot body to the j-th obstacle, computed using
checkCollision.

In this example, i belongs to 1, 2, 3, 4, 5, 6  (the base and end-effector robot bodies are excluded),
and j belongs to 1, 2  (2 obstacles are used).

The Jacobians of the state function, output function, cost function, and inequality constraints are all
provided for the prediction model to improve the simulation efficiency. To calculate the inequality
constraint Jacobian, use the geometricJacobian function and the Jacobian approximation in [1].

Closed-Loop Trajectory Planning

Simulate the robot for a maximum of 50 steps with correct initial conditions.

maxIters = 50;
u0 = zeros(1,numJoints);
mv = u0;
time = 0;
goalReached = false;

Initialize the data array for control.

positions = zeros(numJoints,maxIters);
positions(:,1) = x0(1:numJoints)';

velocities = zeros(numJoints,maxIters);
velocities(:,1) = x0(numJoints+1:end)';
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accelerations = zeros(numJoints,maxIters);
accelerations(:,1) = u0';

timestamp = zeros(1,maxIters);
timestamp(:,1) = time;

Use the nlmpcmove (Model Predictive Control Toolbox) function for closed-loop trajectory
generation. Specify the trajectory generation options using an nlmpcmoveopt (Model Predictive
Control Toolbox) object. Each iteration calculates the position, velocity, and acceleration of the joints
to avoid obstacles as they move towards the goal. The helperCheckGoalReachedKINOVA script
checks if the robot has reached the goal. The helperUpdateMovingObstacles script moves the
obstacle locations based on the time step.

options = nlmpcmoveopt;
for timestep=1:maxIters
    disp(['Calculating control at timestep ', num2str(timestep)]);
    % Optimize next trajectory point 
    [mv,options,info] = nlmpcmove(nlobj,x0,mv,[],[], options);
    if info.ExitFlag < 0
        disp('Failed to compute a feasible trajectory. Aborting...')
        break;
    end
    % Update states and time for next iteration
    x0 = info.Xopt(2,:);
    time = time + nlobj.Ts;
    % Store trajectory points
    positions(:,timestep+1) = x0(1:numJoints)';
    velocities(:,timestep+1) = x0(numJoints+1:end)';
    accelerations(:,timestep+1) = info.MVopt(2,:)';
    timestamp(timestep+1) = time;
    % Check if goal is achieved 
    helperCheckGoalReachedKINOVA;
    if goalReached
        break;
    end
    % Update obstacle pose if it is moving
    if isMovingObst
        helperUpdateMovingObstaclesKINOVA;
    end
end

Calculating control at timestep 1

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Calculating control at timestep 2

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Calculating control at timestep 3

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Calculating control at timestep 4

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Calculating control at timestep 5
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Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Calculating control at timestep 6

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Calculating control at timestep 7

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Target configuration reached.

Execute Planned Trajectory using Joint-Space Robot Simulation and Control

Trim the trajectory vectors based on the time steps calculated from the plan.

tFinal = timestep+1;
positions = positions(:,1:tFinal);
velocities = velocities(:,1:tFinal);
accelerations = accelerations(:,1:tFinal);
timestamp = timestamp(:,1:tFinal);

visTimeStep = 0.2;

Use a jointSpaceMotionModel to track the trajectory with computed-torque control. The
helperTimeBasedStateInputsKINOVA function generates the derivative inputs for the ode15s
function for modelling the computed robot trajectory.

motionModel = jointSpaceMotionModel('RigidBodyTree',robot);

% Control robot to target trajectory points in simulation using low-fidelity model
initState = [positions(:,1);velocities(:,1)];
targetStates = [positions;velocities;accelerations]';    
[t,robotStates] = ode15s(@(t,state) helperTimeBasedStateInputsKINOVA(motionModel,timestamp,targetStates,t,state),...
                                    [timestamp(1):visTimeStep:timestamp(end)],initState);

Visualize the robot motion.

helperFinalVisualizerKINOVA;
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[1] Schulman, J., et al. "Motion planning with sequential convex optimization and convex collision
checking." The International Journal of Robotics Research 33.9 (2014): 1251-1270.

 Plan and Execute Collision-Free Trajectories Using KINOVA Gen3 Manipulator

1-267



Perform Safe Trajectory Tracking Control Using Robotics
Manipulator Blocks

This example shows you how to use Simulink® with manipulator algorithm blocks to achieve safe
trajectory tracking control of a simulated robot.

Both Robotics System Toolbox™ and Simscape Multibody™ are required to run this example.

Introduction

This example provides a model that implements a computed-torque controller with joint position and
velocity feedback using manipulator algorithm blocks. The controller receives joint position and
velocity information from a simulated robot (implemented using Simscape Multibody) and sends
torque commands to drive the robot along a given joint trajectory. A planar object is placed in front of
the robot so the end effector of the robot arm will collide with it when the trajectory is executed.
Without any additional setup, the torque felt from colliding with the object can cause damage on the
robot or the object. To achieve safe trajectory tracking, a trajectory scaling block is built to adjust the
time stamp when assigning the desired motion to the controller. You may adjust some parameters and
interact with the robot while the model is running and observe the effect on the simulated robot.

Set Up Robot Model

This example uses a model of the Rethink Sawyer, a seven degree-of-freedom robot manipulator. Call 
importrobot to generate a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file. Set the DataFormat and Gravity properties to be consistent with
Simscape. The Simulink model accesses this robot model from the workspace in the simulation.

sawyer = importrobot('sawyer.urdf');
sawyer.removeBody('head');
sawyer.DataFormat = 'column';
sawyer.Gravity = [0, 0, -9.80665];

Trajectory Generation

First, assign the start time and duration for the trajectory.

tStart = 0.5;
tDuration = 3;
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Next, assign the initial and target configuration. q0 is the initial configuration and q1 is the target
configuration.

q0 = [0; -1.18; 0; 2.18; 0; -1.0008; 3.3161];
q1 = zeros(7,1);

The following figures show the robot visualization of the initial configuration and the target
configuration related to the location of the planar object. The planar object is placed so that the robot
will collide to it during trajectory tracking.

In the Simulink model, the Polynomial Trajectory block computes the robot's position, velocity, and
acceleration at any instant in the trajectory using a fifth-order polynomial.

Simulink Model Overview

Next, open the Simulink model. The variables generated above are already stored in Simulink model
workspace:

open_system('robotSafeTrajectoryTracking.slx');

The robotSafeTrajectoryTracking model implements a computed torque controller with
trajectory scaling for safe trajectory tracking. There are three main subsystems in this model:

• Computed Torque Controller
• Trajectory Scaling and Desired Motion
• Simscape Multibody Model with Simple Contact Mechanics

On each time step, if the trajectory scaling switch is on, the modified time stamp is used for
evaluating the desired joint position, velocity and acceleration. Then, the computed torque controller
uses the manipulator blocks associated with the rigidBodyTree model to track the desired motion.
The derived control input is fed into the Sawyer model in Simscape Multibody, where the planar
object for interacting with the robot is included.

Build Computed Torque Controller

For a manipulator with n non-fixed joints, the system dynamics can be expressed as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = u
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where q, q̇, q̈, ∈ Rn are the position, velocity and acceleration of the generalized coordinate, u ∈ Rn is
the control input (torque), M(q) is the joint space mass matrix, C(q, q̇)q̇ is the velocity product torque,
G(q) is the gravity torque. To track along a desired joint trajectory with desired position qd, velocity
q̇d and acceleration q̈d, the computed torque controller calculates the torque needed to obtain a given
configuration and velocity, provided the robot dynamics variables M(q), C(q, q̇)q̇, and G(q). In
Simulink, these variables can be easily derived using robotics manipulator blocks from Robotics
System Toolbox to design the following computed torque controller:

u = M(q)(q̈d− Kdq̇e− Kpqe) + C(q, q̇)q̇ + G(q)

where qe = q− qd is the position error and q̇e = q̇− q̇d is the velocity error. With this controller input,
the system dynamics becomes a second-order ODE:

q̈e + Kdq̇e + Kpqe = 0

By choosing Kd and Kp properly, the tracking error qe will converge to zero when time approaches
infinity.

The Computed Torque Controller subsystem is built using three robotics manipulator blocks: Joint
Space Mass Matrix, Velocity Product Torque, and Gravity Torque. Note that the associated 
rigidBodyTree model, sawyer, is assigned in all those blocks, and the configuration and velocity
need to be specified as column vectors.

open_system('robotSafeTrajectoryTracking/Computed Torque Controller');

Inside the Computed Torque Controller, there are two tunable parameters (indicated by colored
blocks):

• Gain Kp: The proportional gain when correcting the robot configuration
• Gain Kd: The derivative gain when correcting the robot configuration

A standard way to determine the Kp and Kd is to calculate them as:

Kp = ωn
2

Kd = 2ωnξ

where ωn and ξ are the natural frequency and damping ratio of the second-order ODE. In this
example, the default value of Kp and Kd are derived by setting the natural frequency and damping
ratio as ωn = 10 and ξ = 1 to make the second-order ODE a critical damped system.

Trajectory Scaling

There are two main blocks in this subsystem:

• Trajectory Scaling
• Desired Motion

Trajectory Scaling is the main block deployed for safe trajectory tracking in this example. At each
time step ti, the original time stamp is calculated as ti = ti− 1 + Δt. However, when the robot collides
with an unexpected object, the increasing torque and deviance from the planned trajectory can be
destructive for both the robot and the object. The main idea of trajectory scaling is to calculate the
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time stamp as ti = ti− 1 + fs(qd, q̇d, q̈d, τmea)Δt by introducing fs(qd, q̇d, q̈d, τmea) ∈ [ − 1, 1], which is a
function of the desired motion and measured torque τmea. The function fs() controls the speed of the
robot motion and is determined based on the interference felt by the robot. If the measured torques
are greater than expected, fs() is decreased to make the robot slow down or even move backward
until the desired torques are achieved. These values of fs() have the following effects on the robot's
motion:

• fs() > 0, the robot moves forward (fs() = 1 is the normal speed).
• fs() = 0, the robot stops.
• fs() < 0, the robot moves backward.

In the Trajectory Scaling block, it is required to estimate the external torque τext = τmea− τ to
calculate fs(), where τmea is the measured torque from the Simscape model, and τ is the expected
torque of the desired motion on the previous time stamp. In the External Torque Observer section of
the model, the Inverse Dynamics block calculates the expected torque which is subtracted from the
measure torque. Expected torque is: τ = M(qd)(q̈d) + C(qd, q̇d)q̇d + G(qd).
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In the Desired Motion area, the output of the trajectory scaling algorithm is fed as an input to a
Polynomial Trajectory block. This block compute a quintic polynomial trajectory given the known
values of q0 and q1 and their boundary conditions of zero velocity and acceleration. It outputs the
position, velocity, and acceleration: qd(t), q̇d(t), and q̈d(t), which are fed to the Computed Torque
Controller subsystem.

Simscape Multibody Robot Model and Simple Contact Mechanics

The Simscape Multibody robot model is imported from the same .urdf file using smimport, where a
set of torque actuators and sensors for joint torque, joint position and velocity are added. A contact
mechanism block simulates the reaction force between the end effector and the obstacle as a sphere
and a plane, where a simple linear spring-damper model is used.
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Note: The contact mechanism has only been implemented between the end effector and the planar
object. Therefore, other parts of the robot arm may still pass through the obstacle.

Run the Model

Run the model and observe the behavior of Sawyer in the robot simulator and interact with it.

First, open the viewer by clicking on the scope icon shown below on the left of the Simscape model
block. The scope displays signals including the joint torques, reaction contact force between the end
effector and the planar object, and the time stamp for calculating desired motion for trajectory
tracking.

Toggle the trajectory scaling switch to "Off".
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Use the following command or click Run to start the simulation.

sim('robotSafeTrajectoryTracking.slx','StopTime','5');

You should see the arm collide with the object yielding high torque inputs and a large reaction force.
Note in this case the original time stamp is used. Stop the simulation afterwards.

Now, toggle trajectory scaling switch to On and rerun the model.

Notice the differences in the computed torques and the reduced reaction force after the collision.

While the simulation is running, adjust the slider to move the object towards or away from the robot.
The robot should react to its position while still trying to execute the trajectory safely.

Summary

This example showed how to use robotics manipulator blocks in Simulink to design a computed
torque controller, and integrate it with trajectory scaling and dynamic simulation in Simscape
Multibody to achieve safe trajectory tracking. The resultant torque, reaction force, and time stamp
demonstrated the capability of trajectory scaling for performing safe trajectory tracking.
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Pick and Place Using RRT for Manipulators
Using manipulators to pick and place objects in an environment may require path planning
algorithms like the rapidly-exploring random tree planner. The planner explores in the joint-
configuration space and searches for a collision-free path between different robot configurations. This
example shows how to use the manipulatorRRT object to tune the planner parameters and plan a
path between two joint configurations based on a rigidBodyTree robot model of the Franka
Emika™ Panda robot. After tuning the planner parameters, the robot manipulator plans a path to
move a can from one place to another.

Load Robot Model and Environment

Load the robot and its environment using the exampleHelperLoadPickAndPlaceRRT function. The
function outputs three variables:

• franka — A Franka Emika Panda robot model as a rigidBodyTree object. The model has been
modified to remove some adjacent collision meshes that are always in collision and adjust position
limits based on feasibility.

• config — An initial configuration of joint positions for the robot.
• env — A set collision objects as a cell array that represent the robot's environment. The path

planner checks for self-collisions and collisions with this environment.

[franka,config,env] = exampleHelperLoadPickAndPlaceRRT;

Visualize the robot model's collision meshes and the environment objects.

figure("Name","Pick and Place Using RRT",...
    "Units","normalized",...
    "OuterPosition",[0, 0, 1, 1],...
    "Visible","on");
show(franka,config,"Visuals","off","Collisions","on");
hold on
for i = 1:length(env)
    show(env{i});
end
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Planner

Create the RRT path planner and specify the robot model and the environment. Define some
parameters, which are later tuned, and specify the start and goal configuration for the robot.

planner = manipulatorRRT(franka, env);

planner.MaxConnectionDistance = 0.3;
planner.ValidationDistance = 0.1;

startConfig = config;
goalConfig = [0.2371   -0.0200    0.0542   -2.2272    0.0013    2.2072   -0.9670    0.0400    0.0400];

Plan the path between configurations. The RRT planner should generate a rapidly-exploring tree of
random configurations to explore the space and eventually returns a collision-free path through the
environment. Before planning, reset the MATLAB's random number generator for repeatabile results.

rng('default');
path = plan(planner,startConfig,goalConfig);
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To visualize the entire path, interpolate the path into small steps. By default, the interpolate
function generates all of the configurations that were checked for feasibility (collision checking)
based on the ValidationDistance property.

interpStates = interpolate(planner, path);

for i = 1:2:size(interpStates,1)
    show(franka, interpStates(i,:),...
        "PreservePlot", false,...
        "Visuals","off",...
        "Collisions","on");
    title("Plan 1: MaxConnectionDistance = 0.3")
    drawnow;
end

Tuning the Planner

Tune the path planner by modifying the MaxConnectionDistance, ValidationDistance,
EnableConnectHeuristic properties on the planner object.
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Setting the MaxConnectionDistance property to a larger value causes longer motions in the
planned path, but also enables the planner to greedily explore the space. Use tic and toc functions
to time the plan function for reference on how these parameters can affect the execution time.

planner.MaxConnectionDistance = 5;
tic
path = plan(planner,startConfig,goalConfig);
toc

Elapsed time is 8.377993 seconds.

Notice the change in the path. The robot arm swings much higher due to the larger connection
distance.

interpStates = interpolate(planner, path);

for i = 1:2:size(interpStates, 1)
    show(franka,interpStates(i,:),...
        "PreservePlot",false,...
        "Visuals","off",...
        "Collisions","on");
    title("Plan 2: MaxConnectionDistance = 5")
    drawnow;
end
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Setting the ValidationDistance to a smaller value enables finer validation of the motion along an
edge in the planned path. Increasing the number of configurations to be validated along a path leads
to longer planning times. A smaller value is useful in case of a cluttered environment with a lot of
collision objects. Because of the small validation distance, interpStates has a larger number of
elements. For faster visualization, the for loop skips more states in this step for faster visualization.

planner.MaxConnectionDistance = 0.3;
planner.ValidationDistance = 0.01;

tic
path = plan(planner,startConfig,goalConfig);
toc

Elapsed time is 11.456217 seconds.

interpStates = interpolate(planner,path);
for i = 1:10:size(interpStates,1)
    show(franka, interpStates(i,:),...
        "PreservePlot",false,...
        "Visuals","off",...
        "Collisions","on");
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    title("Plan 3: ValidationDistance = 0.01")
    drawnow;
end

The connect heuristic allows the planner to greedily join the start and goal trees. In places where the
environment is less cluttered, this heuristic is useful for shorter planning times. However, a greedy
behavior in a cluttered environment leads to wasted connection attempts. Setting the
EnableConnectHeuristic to false may give longer planning times and longer paths, but results
in a higher success rate of finding a path given the number of iterations.

planner.ValidationDistance = 0.1;
planner.EnableConnectHeuristic = false;

tic
path = plan(planner,startConfig,goalConfig);
toc

Elapsed time is 2.241681 seconds.

interpStates = interpolate(planner,path);
for i = 1:2:size(interpStates,1)
    show(franka, interpStates(i,:), ...
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        "PreservePlot",false,...
        "Visuals","off",...
        "Collisions","on");
    title("Plan 4: EnableConnectHeuristic = false")
    drawnow;
end

Attach the Can to the End-Effector

After tuning the planner for the desired behavior, follow the pick-and-place workflow where the robot
moves an object through the environment. This example attaches a cylinder, or can, to the end-
effector of the robot and moves it to a new location. For each configuration, the planner checks for
collisions with the cylinder mesh as well.

% Create can as a rigid body
cylinder1 = env{3};
canBody = rigidBody("myCan");
canJoint = rigidBodyJoint("canJoint");

% Get current pose of the robot hand.
startConfig = path(end, :);
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endEffectorPose = getTransform(franka,startConfig,"panda_hand");

% Place can into the end effector gripper.
setFixedTransform(canJoint,endEffectorPose\cylinder1.Pose); 

% Add collision geometry to rigid body.
addCollision(canBody,cylinder1,inv(cylinder1.Pose));
canBody.Joint = canJoint;

% Add rigid body to robot model.
addBody(franka,canBody,"panda_hand");

% Remove object from environment.
env(3) = [];

After the can has been attached to the robot arm, specify a goal configuration for placing the object.
Modify the planner parameters. Plan a path from start to goal. Visualize the path. Notice the can
clears the wall.

goalConfig = [-0.6564 0.2885 -0.3187 -1.5941 0.1103 1.8678 -0.2344 0.04 0.04];

planner.MaxConnectionDistance = 1;
planner.ValidationDistance = 0.2;
planner.EnableConnectHeuristic = false;
path = plan(planner,startConfig,goalConfig);

interpStates = interpolate(planner,path);

hold off

1 Robotics System Toolbox Examples

1-282



show(franka,config,"Visuals","off","Collisions","on");
hold on
for i = 1:length(env)
    show(env{i});
end

for i = 1:size(interpStates,1)
    show(franka,interpStates(i,:),...
        "PreservePlot", false,...
        "Visuals","off",...
        "Collisions","on");
    title("Plan 5: Place the Can")
    drawnow;
    if i == (size(interpStates,1))
        view([80,7])
    end
end
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Shorten the Planned Path

To shorten your path, use the shorten function and specify a number of iterations. A small value for
the ValidationDistance property combined with a large number of iterations can result in large
computation times.

shortenedPath = shorten(planner,path,20);

interpStates = interpolate(planner,shortenedPath);
for i = 1:size(interpStates,1)
    show(franka, ...
        interpStates(i, :),  ...
        "PreservePlot", false, ...
        "Visuals", "off", ...
        "Collisions", "on");
    drawnow;
    title("Plane 6: Shorten the Path")
    if i > (size(interpStates,1)-2)
        view([80,7])
    end
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end
hold off
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Pick-and-Place Workflow Using Stateflow for MATLAB
This example shows how to setup an end-to-end pick and place workflow for a robotic manipulator
like the KINOVA® Gen3.

The pick-and-place workflow implemented in this example can be adapted to different scenarios,
planners, simulation platforms, and object detection options. The example shown here uses Model
Predictive Control for planning and control, and simulates the robot in MATLAB. For other uses, see:

• “Pick-and-Place Workflow Using RRT Planner and Stateflow for MATLAB” on page 1-294
• “Pick-and-Place Workflow in Gazebo Using ROS” on page 1-302
• “Pick-and-Place Workflow in Gazebo Using Point-Cloud Processing and RRT Path Planning” on

page 1-311

Overview

This example sorts detected objects and places them on benches using a KINOVA Gen3 manipulator.
The example uses tools from four toolboxes:

• Robotics System Toolbox™ is used to model, simulate, and visualize the manipulator, and for
collision-checking.

• Model Predictive Control Toolbox™ and Optimization Toolbox™ are used to generated
optimized, collision-free trajectories for the manipulator to follow.

• Stateflow® is used to schedule the high-level tasks in the example and step from task to task.

This example builds on key concepts from two related examples:

• “Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page
1-257 shows how to generate and simulate interpolated joint trajectories to move from an initial to
a desired end-effector pose.

• “Plan and Execute Collision-Free Trajectories Using KINOVA Gen3 Manipulator” on page 1-261
shows how to plan closed-loop collision-free robot trajectories to a desired end-effector pose using
nonlinear model predictive control.

Stateflow Chart

This example uses a Stateflow chart to schedule tasks in the example. Open the chart to examine the
contents and follow state transitions during chart execution.

edit exampleHelperFlowChartPickPlace.sfx

The chart dictates how the manipulator interacts with the objects, or parts. It consists of basic
initialization steps, followed by two main sections:

• Identify Parts and Determine Where to Place Them
• Execute Pick-and-Place Workflow
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Initialize the Robot and Environment

First, the chart creates an environment consisting of the Kinova Gen3 manipulator, three parts to be
sorted, the shelves used for sorting, and a blue obstacle. Next, the robot moves to the home position.

Identify the Parts and Determine Where to Place Them

In the first step of the identification phase, the parts must be detected. The
exampleCommandDetectParts function directly gives the object poses. Replace this class with your
own object detection algorithm based on your sensors or objects.

Next, the parts must be classified. The exampleCommandClassifyParts function classifies the
parts into two types to determine where to place them (top or bottom shelf). Again, you can replace
this function with any method for classifying parts.

Execute Pick-and-Place Workflow

Once parts are identified and their destinations have been assigned, the manipulator must iterate
through the parts and move them onto the appropriate tables.
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Pick up the Object

The picking phase moves the robot to the object, picks it up, and moves to a safe position, as shown
in the following diagram:

The exampleCommandComputeGraspPose function computes the grasp pose. The class computes a
task-space grasping position for each part. Intermediate steps for approaching and reaching towards
the part are also defined relative to the object.

This robot picks up objects using a simulated gripper. When the gripper is activated,
exampleCommandActivateGripper adds the collision mesh for the part onto the rigidBodyTree
representation of the robot, which simulates grabbing it. Collision detection includes this object while
it is attached. Then, the robot moves to a retracted position away from the other parts.

Place the Object

The robot then places the object on the appropriate shelf.

As with the picking workflow, the placement approach and retracted positions are computed relative
to the known desired placement position. The gripper is deactivated using
exampleCommandActivateGripper, which removes the part from the robot.

Moving the Manipulator to a Specified Pose

Most of the task execution consists of instructing the robot to move between different specified poses.
The exampleHelperPlanExecuteTrajectoryPickPlace function defines a solver using a
nonlinear model predictive controller (see “Nonlinear MPC” (Model Predictive Control Toolbox)) that
computes a feasible, collision-free optimized reference trajectory using nlmpcmove (Model Predictive
Control Toolbox) and checkCollision. The obstacles are represented as spheres to ensure the
accurate approximation of the constraint Jacobian in the definiton of the nonlinear model predictive
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control algorithm (see [1]). The helper function then simulates the motion of the manipulator under
computed-torque control as it tracks the reference trajectory using the jointSpaceMotionModel
object, and updates the visualization. The helper function is called from the Stateflow chart via
exampleCommandMoveToTaskConfig, which defines the correct inputs.

This workflow is examined in detail in “Plan and Execute Collision-Free Trajectories Using KINOVA
Gen3 Manipulator” on page 1-261. The controller is used to ensure collision-free motion. For simpler
trajectories where the paths are known to be obstacle-free, trajectories could be executed using
trajectory generation tools and simulated using the manipulator motion models. See “Plan and
Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page 1-257.

Task Scheduling in a Stateflow Chart

This example uses a Stateflow chart to direct the workflow in MATLAB®. For more info on creating
state flow charts, see “Create Stateflow Charts for Execution as MATLAB Objects” (Stateflow).

The Stateflow chart directs task execution in MATLAB by using command functions. When the
command finishes executing, it sends an input event to wake up the chart and proceed to the next
step of the task execution, see “Execute a Standalone Chart” (Stateflow).

Run and Visualize the Simulation

This simulation uses a KINOVA Gen3 manipulator with a Robotiq gripper. Load the robot model from
a .mat file as a rigidBodyTree object.

load('exampleHelperKINOVAGen3GripperColl.mat'); 

Initialize the Pick and Place Coordinator

Set the initial robot configuration. Create the coordinator, which handles the robot control, by giving
the robot model, initial configuration, and end-effector name.

currentRobotJConfig = homeConfiguration(robot);
coordinator = exampleHelperCoordinatorPickPlace(robot,currentRobotJConfig, "gripper");

Specify the home configuration and two poses for placing objects of different types.

coordinator.HomeRobotTaskConfig = trvec2tform([0.4, 0, 0.6])*axang2tform([0 1 0 pi]);
coordinator.PlacingPose{1} = trvec2tform([0.23 0.62 0.33])*axang2tform([0 1 0 pi]);
coordinator.PlacingPose{2} = trvec2tform([0.23 -0.62 0.33])*axang2tform([0 1 0 pi]);

Run and Visualize the Simulation

Connect the coordinator to the Stateflow Chart. Once started, the Stateflow chart is responsible for
continuously going through the states of detecting objects, picking them up and placing them in the
correct staging area.

coordinator.FlowChart = exampleHelperFlowChartPickPlace('coordinator', coordinator); 

Use a dialog to start the pick-and-place task execution. Click Yes in the dialog to begin the simulation.

answer = questdlg('Do you want to start the pick-and-place job now?', ...
         'Start job','Yes','No', 'No');

switch answer
    case 'Yes'
        % Trigger event to start Pick and Place in the Stateflow Chart
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        coordinator.FlowChart.startPickPlace;        
    case 'No'
        % End Pick and Place
        coordinator.FlowChart.endPickPlace;        
        delete(coordinator.FlowChart);
        delete(coordinator);
end

Ending the Pick-and-Place task

The Stateflow chart will finish executing automatically after 3 failed attempts to detect new objects.
To end the pick-and-place task prematurely, uncomment and execute the following lines of code or
press Ctrl+C in the command window.

% coordinator.FlowChart.endPickPlace;        
% delete(coordinator.FlowChart);
% delete(coordinator);
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Observe the Simulation States

During execution, the active states at each point in time are highlighted in blue in the Stateflow
chart. This helps keeping track of what the robot does and when. You can click through the
subsystems to see the details of the state in action.

Visualize the Pick-and-Place Action

The example uses interactiveRigidBodyTree for robot visualization. The visualization shows the
robot in the working area as it moves parts around. The robot avoids obstacles in the environment
(blue cylinder) and places objects on top or bottom shelf based on their classification. The robot
continues working until all parts have been placed.
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Pick-and-Place Workflow Using RRT Planner and Stateflow for
MATLAB

This example shows how to setup an end-to-end pick-and-place workflow for a robotic manipulator
like the KINOVA® Gen3.

The pick-and-place workflow implemented in this example can be adapted to different scenarios,
planners, simulation platforms, and object detection options. The example shown here uses the
rapidly-exploring random tree (RRT) algorithm for planning, and simulates the robot in MATLAB. For
other uses, see:

• “Pick-and-Place Workflow Using Stateflow for MATLAB” on page 1-286
• “Pick-and-Place Workflow in Gazebo Using ROS” on page 1-302
• “Pick-and-Place Workflow in Gazebo Using Point-Cloud Processing and RRT Path Planning” on

page 1-311

Overview

This example sorts detected objects onto shelves using a KINOVA Gen3 manipulator. The example
uses tools from two toolboxes:

• Robotics System Toolbox™ is used to model, simulate, and visualize the manipulator, and plan
collision-free paths for the manipulator to follow using RRT.

• Stateflow® is used to schedule the high-level tasks in the example and step from task to task.

This example uses the RRT algorithm for path planning. For another example that goes into more
details about the RRT planner, see “Pick and Place Using RRT for Manipulators” on page 1-275.

Stateflow Chart

This example uses a Stateflow chart to schedule tasks in the example. Open the chart to examine the
contents and follow state transitions during chart execution.

edit exampleHelperFlowChartPickPlaceRRT.sfx

The chart dictates how the manipulator interacts with the objects, or parts. It consists of basic
initialization steps, followed by two main sections:

• Identify Parts and Determine Where to Place Them
• Execute Pick-and-Place Workflow
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Initialize the Robot and Environment

First, the chart creates an environment consisting of the Kinova Gen3 manipulator, three parts to be
sorted, the shelves used for sorting, and a blue obstacle. Next, the robot moves to the home position.

Identify the Parts and Determine Where to Place Them

In the first step of the identification phase, the parts must be detected. The
exampleCommandDetectParts function directly gives the object poses. Replace this class with your
own object detection algorithm based on your sensors or objects.

Next, the parts must be classified. The exampleCommandClassifyParts function classifies the
parts into two types to determine where to place them (top or bottom shelf). Again, you can replace
this function with any method for classifying parts.

Execute Pick-and-Place Workflow

Once parts are identified and their destinations have been assigned, the manipulator must iterate
through the parts and move them onto the appropriate tables.
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Pick up the Object

The picking phase moves the robot to the object, picks it up, and moves to a safe position, as shown
in the following diagram:

The exampleCommandComputeGraspPose function computes the grasp pose. The class computes a
task-space grasping position for each part. Intermediate steps for approaching and reaching towards
the part are also defined relative to the object.

This robot picks up objects using a simulated pneumatic gripper. When the gripper is activated,
exampleCommandActivateGripper adds the collision mesh for the part onto the rigidBodyTree
representation of the robot, by using the addCollision object function. Collision detection includes
this object while it is attached. Then, the robot moves to a retracted position away from the other
parts.

Place the Object

The robot then places the object on the appropriate shelf.

As with the picking workflow, the placement approach and retracted positions are computed relative
to the known desired placement position. The gripper is deactivated using
exampleCommandActivateGripper, which removes the part from the robot, using
clearCollision. Every time a part of specific type is placed, the placing pose for this object type is
updated so that next part of same type is placed next to the placed part.

Moving the Manipulator to a Specified Pose

Most of the task execution consists of instructing the robot to move between different specified poses.
The exampleHelperMoveToTaskConfig function defines an RRT planner using the
manipulatorRRT object, which plans paths from an initial to a desired joint configuration by
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avoiding collisions with specified collision objects in the scene. The resulting path is first shortened
and then interpolated at a desired validation distance. To generate a trajectory, the trapveltraj
function is used to assign time steps to each of the interpolated waypoints following a trapezoidal
profile. Finally, the waypoints with their associated times are interpolated to a desired sample rate
(every 0.1 seconds). The generated trajectories ensure that the robot moves slowly at the start and
the end of the motion when it is approaching or placing an object.

For another example that goes into more details about the RRT planner, see “Pick and Place Using
RRT for Manipulators” on page 1-275.

For simpler trajectories where the paths are known to be obstacle-free, trajectories could be executed
using trajectory generation tools and simulated using the manipulator motion models. See the “Plan
and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page 1-257
example.

Task Scheduling in a Stateflow Chart

This example uses a Stateflow chart to direct the workflow in MATLAB®. For more info on creating
state flow starts, see “Create Stateflow Charts for Execution as MATLAB Objects” (Stateflow).

The Stateflow chart directs task execution in MATLAB by using command functions. When the
command finishes executing, it sends an input event to wake up the chart and proceed to the next
step of the task execution, see “Execute a Standalone Chart” (Stateflow).

Run and Visualize the Simulation

This simulation uses a KINOVA Gen3 manipulator with a Robotiq gripper. Load the robot model from
a .mat file as a rigidBodyTree object.

load('exampleHelperKINOVAGen3GripperCollRRT.mat'); 

Initialize the Pick and Place Coordinator

Set the initial robot configuration. Create the coordinator, which handles the robot control, by giving
the robot model, initial configuration, and end-effector name.

currentRobotJConfig = homeConfiguration(robot);
coordinator = exampleHelperCoordinatorPickPlaceRRT(robot,currentRobotJConfig, "gripper");

Specify the home configuration and two poses for placing objects of two different types. The first pose
corresponds to the middle shelf where all parts of type 1 are placed and the second pose corresponds
to the top shelf where parts of type 2 are placed. The placing poses are updated in the Stateflow
chart every time a new part is placed successfully. Parts of different type are identified by different
colors in the vizualization.
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coordinator.HomeRobotTaskConfig = trvec2tform([0.4, 0, 0.5])*axang2tform([0 1 0 pi]);
coordinator.PlacingPose{1} = trvec2tform([[-0.15 0.52 0.46]])*axang2tform([1 0 0 -pi/2]);
coordinator.PlacingPose{2} = trvec2tform([[-0.15 0.52 0.63]])*axang2tform([1 0 0 -pi/2]);

Run and Visualize the Simulation

Connect the coordinator to the Stateflow Chart. Once started, the Stateflow chart is responsible for
continuously going through the states of detecting objects, picking them up and placing them in the
correct staging area.

coordinator.FlowChart = exampleHelperFlowChartPickPlaceRRT('coordinator', coordinator); 

Use a dialog to start the pick-and-place task execution. Click Yes in the dialog to begin the simulation.

answer = questdlg('Do you want to start the pick-and-place job now?', ...
         'Start job','Yes','No', 'No');

switch answer
    case 'Yes'
        % Trigger event to start Pick and Place in the Stateflow Chart
        coordinator.FlowChart.startPickPlace;        
    case 'No'
        % End Pick and Place
        coordinator.FlowChart.endPickPlace;        
        delete(coordinator.FlowChart);
        delete(coordinator);
end
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Ending the Pick-and-Place task

The Stateflow chart will finish executing automatically after 3 failed attempts to detect new objects.
To end the pick-and-place task prematurely, uncomment and execute the following lines of code or
press Ctrl+C in the command window.

% coordinator.FlowChart.endPickPlace;        
% delete(coordinator.FlowChart);
% delete(coordinator);

Observe the Simulation States

During execution, the active states at each point in time are highlighted in blue in the Stateflow
chart. This helps keeping track of what the robot does and when. You can click through the
subsystems to see the details of the state in action.

Visualize the Pick-and-Place Action

The example uses the interactiveRigidBodyTree object for robot visualization. The visualization
shows the robot in the working area as it moves parts around. The robot avoids obstacles in the
environment (blue cylinder) and places objects on the top or bottom shelf based on their
classification. The robot continues working until all parts have been placed.
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Pick-and-Place Workflow in Gazebo Using ROS
This example shows how to setup an end-to-end pick and place workflow for a robotic manipulator
like the KINOVA® Gen3 and simulate the robot in the Gazebo physics simulator.

Overview

This example identifies and recycles objects into two bins using a KINOVA Gen3 manipulator. The
example uses tools from five toolboxes:

• Robotics System Toolbox™ is used to model and simulate the manipulator.
• Stateflow® is used to schedule the high-level tasks in the example and step from task to task.
• ROS Toolbox™ is used for connecting MATLAB to Gazebo.
• Computer Vision Toolbox™ and Deep Learning Toolbox™ are used for object detection using

simulated camera in Gazebo.

This example builds on key concepts from the following related examples:

• “Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page
1-257 shows how to generate and simulate interpolated joint trajectories to move from an initial to
a desired end-effector pose.

• “Pick-and-Place Workflow Using Stateflow for MATLAB” on page 1-286
• Computer Vision Toolbox example: “Train YOLO v2 Network for Vehicle Detection” (Computer

Vision Toolbox)
• ROS Toolbox example: “Get Started with Gazebo and Simulated TurtleBot” (ROS Toolbox)

Robot Simulation and Control in Gazebo

Start a ROS-based simulator for a KINOVA Gen3 robot and configure the MATLAB® connection with
the robot simulator.

This example uses a virtual machine (VM) containing ROS Melodic available for download here. If you
have never used it before, see “Get Started with Gazebo and Simulated TurtleBot” (ROS Toolbox).

• In VM settings, VM > Settings > Hardware > Display, disable Accelerate 3D graphics.
• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Gazebo Recycling World icon to start the Gazebo world built

for this example.
• Specify the IP address and port number of the ROS master in Gazebo so that MATLAB® can

communicate with the robot simulator. For this example, the ROS master in Gazebo uses the IP
address of 192.168.203.131 displayed on the Desktop. Adjust the rosIP variable based on your
VM.

• Start the ROS 1 network using rosinit.

rosIP = '192.168.203.131';   % IP address of ROS-enabled machine  

rosinit(rosIP,11311); % Initialize ROS connection

The value of the ROS_IP environment variable, 192.168.31.1, will be used to set the advertised address for the ROS node.
Initializing global node /matlab_global_node_36570 with NodeURI http://192.168.31.1:51073/
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After initializing the Gazebo world by click the icon, the VM loads a KINOVA Gen3 Robot arm on a
table with one recycling bin on each side. To simulate and control the robot arm in Gazebo, the VM
contains the ros_kortex ROS package, which are provided by KINOVA.

The packages use ros_control to control the joints to desired joint positions. For additional details on
using the VM, refer to “Get Started with Gazebo and Simulated TurtleBot” (ROS Toolbox)

Stateflow Chart

This example uses a Stateflow chart to schedule tasks in the example. Open the chart to examine the
contents and follow state transitions during chart execution.

edit exampleHelperFlowChartPickPlaceROSGazebo.sfx

The chart dictates how the manipulator interacts with the objects, or parts. It consists of basic
initialization steps, followed by two main sections:

• Identify Parts and Determine Where to Place Them
• Execute Pick-and-Place Workflow
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For a high-level description of the pick-and-place steps, see “Pick-and-Place Workflow Using Stateflow
for MATLAB” on page 1-286.

Opening and closing the gripper

The command for activating the gripper, exampleCommandActivateGripperROSGazebo, sends an
action request to open and close the gripper implemented in Gazebo. To send a request to open the
gripper, the following code is used. Note: The example code shown just illustrates what the command
does. Do not run.

[gripAct,gripGoal] = rosactionclient('/my_gen3/custom_gripper_controller/gripper_cmd');
gripperCommand = rosmessage('control_msgs/GripperCommand');
gripperCommand.Position = 0.0;  
gripGoal.Command = gripperCommand;
sendGoal(gripAct,gripGoal);
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Moving the Manipulator to a Specified Pose

The commandMoveToTaskConfig command function is used to move the manipulator to specified
poses.

Planning

The path planning generates simple task-space trajectories from an initial to a desired task
configuration using trapveltraj and transformtraj. For more details on planning and executing
trajectories, see “Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3
Manipulator” on page 1-257.

Joint Trajectory Controller in ROS

After generating a joint trajectory for the robot to follow, commandMoveToTaskConfig samples the
trajectory at the desired sample rate, packages it into joint-trajectory ROS messages and sends an
action request to the joint-trajectory controller implemented in the KINOVA ROS package.

Detecting and classifying objects in the scene

The functions commandDetectParts and commandClassifyParts use the simulated end-effector
camera feed from the robot and apply a pretrained deep-learning model to detect the recyclable
parts. The model takes a camera frame as input and outputs the 2D location of the object (pixel
position) and the type of recycling it requires (blue or green bin). The 2D location on the image frame
is mapped to the robot base frame.

Deep-Learning Model Training: Acquiring and Labeling Gazebo Images

The detection model was trained using a set of images acquired in the simulated environment within
the Gazebo world with the two classes of objects (bottle, can) placed on different locations of the
table. The images are acquired from the simulated camera on-board the robot, which is moved along
the horizontal and vertical planes to get images of the objects from many different camera
perspectives.

The images are then labeled using the Image Labeler (Computer Vision Toolbox) app, creating the
training dataset for the YOLO v2 detection model. trainYOLOv2ObjectDetector (Computer Vision
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Toolbox) trains the model. To see how to train a YOLO v2 network in MATLAB, see “Train YOLO v2
Network for Vehicle Detection” (Computer Vision Toolbox).

The trained model is deployed for online inference on the single image acquired by the on-board
camera when the robot is in the home position. The detect (Computer Vision Toolbox) function
returns the image position of the bounding boxes of the detected objects, along with their classes,
that is then used to find the position of the center of the top part of the objects. Using a simple
camera projection approach, assuming the height of the objects is known, the object position is
projected into the world and finally used as reference position for picking the object. The class
associated with the bounding boxed decides which bin to place the object.

Start the Pick-and-Place Task

This simulation uses a KINOVA Gen3 manipulator with a Robotiq gripper attached. Load the robot
model from a .mat file as a rigidBodyTree object.

load('exampleHelperKINOVAGen3GripperROSGazebo.mat'); 

Initialize the Pick and Place Coordinator

Set the initial robot configuration. Create the coordinator, which handles the robot control, by giving
the robot model, initial configuration, and end-effector name.

initialRobotJConfig =  [3.5797   -0.6562   -1.2507   -0.7008    0.7303   -2.0500   -1.9053];
endEffectorFrame = "gripper";

Initialize the coordinator by giving the robot model, initial configuration, and end-effector name.

coordinator = exampleHelperCoordinatorPickPlaceROSGazebo(robot,initialRobotJConfig, endEffectorFrame);

Specify the home configuration and two poses for placing objects.

coordinator.HomeRobotTaskConfig = getTransform(robot, initialRobotJConfig, endEffectorFrame); 
coordinator.PlacingPose{1} = trvec2tform([[0.2 0.55 0.26]])*axang2tform([0 0 1 pi/2])*axang2tform([0 1 0 pi]);
coordinator.PlacingPose{2} = trvec2tform([[0.2 -0.55 0.26]])*axang2tform([0 0 1 pi/2])*axang2tform([0 1 0 pi]);

Run and Visualize the Simulation

Connect the coordinator to the Stateflow Chart. Once started, the Stateflow chart is responsible for
continuously going through the states of detecting objects, picking them up and placing them in the
correct staging area.

coordinator.FlowChart = exampleHelperFlowChartPickPlaceROSGazebo('coordinator', coordinator); 

Use a dialog to start the pick-and-place task execution. Click Yes in the dialog to begin the simulation.

answer = questdlg('Do you want to start the pick-and-place job now?', ...
         'Start job','Yes','No', 'No');

switch answer
    case 'Yes'
        % Trigger event to start Pick and Place in the Stateflow Chart
        coordinator.FlowChart.startPickPlace;       
    case 'No'
        coordinator.FlowChart.endPickPlace;
        delete(coordinator.FlowChart)
        delete(coordinator);
end
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Ending the pick-and-place task

The Stateflow chart will finish executing automatically after 3 failed attempts to detect new objects.
To end the pick-and-place task prematurely, uncomment and execute the following lines of code or
press Ctrl+C in the command window.

% coordinator.FlowChart.endPickPlace;        
% delete(coordinator.FlowChart);
% delete(coordinator);

Observe the Simulation States

During execution, the active states at each point in time are highlighted in blue in the Stateflow
chart. This helps keeping track of what the robot does and when. You can click through the
subsystems to see the details of the state in action.

Visualize the Pick-and-Place Action in Gazebo

The Gazebo world shows the robot in the working area as it moves parts to the recycling bins. The
robot continues working until all parts have been placed. When the detection step doesn't find any
more parts four times, the Stateflow chart exits.
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if strcmp(answer,'Yes')
    while  coordinator.NumDetectionRuns <  4
        % Wait for no parts to be detected.
    end
end

Shutdown the ROS network after finishing the example.

rosshutdown

Shutting down global node /matlab_global_node_36570 with NodeURI http://192.168.31.1:51073/

Copyright 2020 The MathWorks, Inc.
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Pick-and-Place Workflow in Gazebo Using Point-Cloud
Processing and RRT Path Planning

Setup an end-to-end pick and place workflow for a robotic manipulator like the KINOVA® Gen3.

The pick-and-place workflow implemented in this example can be adapted to different scenarios,
planners, simulation platforms, and object detection options. The example shown here uses RRT for
planning and simulates the robot in Gazebo using the Robot Operating System (ROS). For other pick-
and-place workflows, see:

• “Pick-and-Place Workflow Using Stateflow for MATLAB” on page 1-286
• “Pick-and-Place Workflow Using RRT Planner and Stateflow for MATLAB” on page 1-294
• “Pick-and-Place Workflow in Gazebo Using ROS” on page 1-302

Overview

This example identifies and recycles objects into two bins using a KINOVA Gen3 manipulator. The
example uses tools from five toolboxes:

• Robotics System Toolbox™ is used to model and simulate the manipulator.
• ROS Toolbox™ is used for connecting MATLAB to Gazebo.
• Image Processing Toolbox™ and Computer Vision Toolbox™ are used for object detection

using point cloud processing and simulated depth camera in Gazebo.

This example builds on key concepts from the following related examples:

• “Pick and Place Using RRT for Manipulators” on page 1-275
• “Get Started with Gazebo and Simulated TurtleBot” (ROS Toolbox) (ROS Toolbox)
• “3-D Point Cloud Registration and Stitching” (Computer Vision Toolbox) (Computer Vision Toolbox)

Robot Simulation and Control in Gazebo

Start a ROS-based simulator for a KINOVA Gen3 robot and configure the MATLAB® connection with
the robot simulator.

This example uses a virtual machine (VM) containing ROS Melodic available for download here.

• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Gazebo Recycling World - Depth Sensing icon to start the

Gazebo world built for this example.
• Specify the IP address and port number of the ROS master in Gazebo so that MATLAB® can

communicate with the robot simulator. For this example, the ROS master in Gazebo uses the IP
address of 172.21.72.160 displayed on the Desktop. Adjust the rosIP variable based on your
VM.

• Start the ROS 1 network using rosinit.

rosIP = '172.16.34.129'; % IP address of ROS-enabled machine  

rosshutdown;

rosinit(rosIP,11311); % Initialize ROS connection
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Initializing global node /matlab_global_node_63627 with NodeURI http://172.16.34.1:35153/ and MasterURI http://172.16.34.129:11311.

After initializing the Gazebo world by click the icon, the VM loads a KINOVA Gen3 Robot arm on a
table with one recycling bin on each side. To simulate and control the robot arm in Gazebo, the VM
contains the ros_kortex ROS package, which are provided by KINOVA.

The packages use ros_control to control the joints to desired joint positions. For additional details on
using the VM, refer to “Get Started with Gazebo and Simulated TurtleBot” (ROS Toolbox)

Pick-and-Place Tasks

The Pick-and-Place workflow is implemented in MATLAB and consists of basic initialization steps,
followed by two main sections:

• Identify Parts and Determine Where to Place Them
• Execute Pick-and-Place Workflow
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For an implementation that uses Stateflow to schedule the tasks, see “Pick-and-Place Workflow Using
Stateflow for MATLAB” on page 1-286.

Scanning the environment to build planning scene for RRT path planner

Before starting the pick-and-place job, the robot goes through a set of tasks to identify the planning
scene in the exampleCommandBuildWorld function and detects the objects to pick using the
exampleCommandDetectParts function.

 Pick-and-Place Workflow in Gazebo Using Point-Cloud Processing and RRT Path Planning

1-313



First, the robot moves to predefined scanning poses one by one and captures a set of point clouds of
the scene using an onboard depth sensor. At each of the scanning poses, the current camera pose is
retrieved by reading the corresponding ROS transformation using rostf (ROS Toolbox) and
getTransform (ROS Toolbox). The scanning poses are visualized below:

Once the robot has visited all the scanning poses, the captured point clouds are transformed from
camera to world frame using pctransform (Computer Vision Toolbox) and merged to a single point
cloud using pcmerge (Computer Vision Toolbox). The final point cloud is segmented based on
Euclidean distance using pcsegdist (Computer Vision Toolbox). The resulting point cloud segments
are then encoded as collision meshes (see collisionMesh) to be easily identified as obstacles
during RRT path planning. The process from point cloud to collision meshes is shown one mesh at at
a time below.
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Opening and closing the gripper

The command for activating the gripper, exampleCommandActivateGripper, sends an action
request to open and close the gripper implemented in Gazebo. For example, to send a request to open
the gripper, the following code is used.

[gripAct,gripGoal] = rosactionclient('/my_gen3/custom_gripper_controller/gripper_cmd');
gripperCommand = rosmessage('control_msgs/GripperCommand');
gripperCommand.Position = 0.0;  
gripGoal.Command = gripperCommand;
sendGoal(gripAct,gripGoal);

Moving the manipulator to a specified pose

Most of the task execution consists of instructing the robot to move between different specified poses.
The exampleHelperMoveToTaskConfig function defines an RRT planner using the
manipulatorRRT object, which plans paths from an initial to a desired joint configuration by
avoiding collisions with specified collision objects in the scene. The resulting path is first shortened
and then interpolated at a desired validation distance. To generate a trajectory, the trapveltraj
function is used to assign time steps to each of the interpolated waypoints following a trapezoidal
profile. Finally, the waypoints with their associated times are interpolated to a desired sample rate
(every 0.1 seconds). The generated trajectories ensure that the robot moves slowly at the start and
the end of the motion when it is approaching or placing an object.
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The planned paths are visualized in MATLAB along with the planning scene.

This workflow is examined in detail in the “Pick-and-Place Workflow Using RRT Planner and Stateflow
for MATLAB” on page 1-294 example. For more information about the RRT planner, see “Pick and
Place Using RRT for Manipulators” on page 1-275. For simpler trajectories where the paths are
known to be obstacle-free, trajectories could be executed using trajectory generation tools and
simulated using the manipulator motion models. See “Plan and Execute Task- and Joint-Space
Trajectories Using KINOVA Gen3 Manipulator” on page 1-257.

Joint Trajectory Controller in ROS

After generating a joint trajectory for the robot to follow, the exampleCommandMoveToTaskConfig
function samples the trajectory at the desired sample rate, packages it into joint-trajectory ROS
messages and sends an action request to the joint-trajectory controller implemented in the KINOVA
ROS package.

Detecting and classifying objects in the scene

The functions exampleCommandDetectParts and exampleCommandClassifyParts use the
simulated end-effector depth camera feed from the robot to detect the recyclable parts. Since a
complete point cloud of the scene is available from the Build Environment step, the iterative closest
point (ICP) registration algorithm implemented in pcregistericp (Computer Vision Toolbox)
identifies which of the segmented point clouds match the geometries of objects that should be picked.

Start the Pick-and-Place Workflow

This simulation uses a KINOVA Gen3 manipulator with a gripper attached.

load('exampleHelperKINOVAGen3GripperGazeboRRTScene.mat'); 
rng(0)
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Initialize the Pick-and-Place Application

Set the initial robot configuration and name of the end-effector body.

initialRobotJConfig =  [3.5797   -0.6562   -1.2507   -0.7008    0.7303   -2.0500   -1.9053];
endEffectorFrame = "gripper";

Initialize the coordinator by giving the robot model, initial configuration, and end-effector name.

coordinator = exampleHelperCoordinatorPickPlaceROSGazeboScene(robot,initialRobotJConfig, endEffectorFrame);

Specify pick-and-place coordinator properties.

coordinator.HomeRobotTaskConfig = getTransform(robot, initialRobotJConfig, endEffectorFrame);
coordinator.PlacingPose{1} = trvec2tform([0.2 0.55 0.26])*axang2tform([0 0 1 pi/2])*axang2tform([0 1 0 pi]);
coordinator.PlacingPose{2} = trvec2tform([0.2 -0.55 0.26])*axang2tform([0 0 1 pi/2])*axang2tform([0 1 0 pi]);

Run the Pick-and-Place Application Step by Step

% Task 1: Build world
exampleCommandBuildWorldROSGazeboScene(coordinator);

Moving to scanning pose 1
Searching for other config...
Now planning...
Waiting until robot reaches the desired configuration
Capturing point cloud 1
Getting camera pose 1
Moving to scanning pose 2
Now planning...
Waiting until robot reaches the desired configuration
Capturing point cloud 2
Getting camera pose 2
Moving to scanning pose 3
Searching for other config...
Now planning...
Waiting until robot reaches the desired configuration
Capturing point cloud 3
Getting camera pose 3
Moving to scanning pose 4
Now planning...
Waiting until robot reaches the desired configuration
Capturing point cloud 4
Getting camera pose 4
Moving to scanning pose 5
Now planning...
Waiting until robot reaches the desired configuration
Capturing point cloud 5
Getting camera pose 5

% Task 2: Move to home position
exampleCommandMoveToTaskConfigROSGazeboScene(coordinator,coordinator.HomeRobotTaskConfig);

Now planning...
Waiting until robot reaches the desired configuration

% Task 3: Detect objects in the scene to pick
exampleCommandDetectPartsROSGazeboScene(coordinator);
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Bottle detected...
Can detected...

% Task 4: Select next part to pick
remainingParts = exampleCommandPickingLogicROSGazeboScene(coordinator);

     1

while remainingParts==true
    % Task 5: [PICKING] Compute grasp pose
    exampleCommandComputeGraspPoseROSGazeboScene(coordinator);
    
    % Task 6: [PICKING] Move to picking pose
    exampleCommandMoveToTaskConfigROSGazeboScene(coordinator, coordinator.GraspPose);
    
    % Task 7: [PICKING] Activate gripper
    exampleCommandActivateGripperROSGazeboScene(coordinator,'on');
    
    % Part has been picked
    
    % Task 8: [PLACING] Move to placing pose
    exampleCommandMoveToTaskConfigROSGazeboScene(coordinator, ...
    coordinator.PlacingPose{coordinator.DetectedParts{coordinator.NextPart}.placingBelt});
    
    % Task 9: [PLACING] Deactivate gripper
    exampleCommandActivateGripperROSGazeboScene(coordinator,'off');
    
    % Part has been placed
    
    % Select next part to pick
    remainingParts = exampleCommandPickingLogicROSGazeboScene(coordinator);    

    % Move to home position
    exampleCommandMoveToTaskConfigROSGazeboScene(coordinator,coordinator.HomeRobotTaskConfig);
end

Now planning...
Waiting until robot reaches the desired configuration

Gripper closed...

Now planning...
Waiting until robot reaches the desired configuration

Gripper open...

     2

Now planning...
Waiting until robot reaches the desired configuration

Now planning...
Waiting until robot reaches the desired configuration

Gripper closed...

Now planning...
Waiting until robot reaches the desired configuration
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Gripper open...

Now planning...
Waiting until robot reaches the desired configuration

% Shut down ros when the pick-and-place application is done
rosshutdown;

Shutting down global node /matlab_global_node_63627 with NodeURI http://172.16.34.1:35153/ and MasterURI http://172.16.34.129:11311.

Visualize the Pick-and-Place Action in Gazebo

The Gazebo world shows the robot in the working area as it moves parts to the recycling bins. The
robot continues working until all parts have been placed.
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Plan Paths With End-Effector Constraints Using State Spaces
For Manipulators

Plan a manipulator robot path using sampling-based planners like the rapidly-exploring random trees
(RRT) algorithm.

This example uses the manipulatorStateSpace and manipulatorCollisionBodyValidator
objects as a state space and state validator that works with sampling-based planners, like the
plannerBiRRT object available with Navigation Toolbox™. In this example, you define the custom
behavior of a manipulator state space to ensure end-effector constraints are met. You plan a path to
pick and place a container with a constrained end effector that must remain upright throughout the
path. This constraint could be for a container of fluids, a welding tool path, or drilling application
where you must keep the end-effector pose in a fixed orientation.

Define State Space

To create a constrained state space, generate a class exampleHelperConstrainedStateSpace
that derives from manipulatorStateSpace. Open this example to get the supporting file.

classdef exampleHelperConstrainedStateSpace < manipulatorStateSpace

Specify the constructor syntax which requires the robot model, end effector name, and target
orientation as inputs. Define a property called EnableConstraint for turning the constraint on and
off.

The constrained region is defined in the constructor using a workspaceGoalRegion object. The
bounds on the xyz-position are all [-100,100] meters. The orientation bounds are constrainted to
any rotation [-pi pi] about the z-axis with zero rotation in x and y.

Create an inverse kinematics (IK) solver, and specify any solver parameters. This solver generates the
joint configurations of the robot for the end-effector poses sampled inside the workspace.

        function obj = exampleHelperConstrainedStateSpace(rbt,endEffectorName,targetOrientation)
            %Constructor
            obj@manipulatorStateSpace(rbt);
            obj.EnableConstraint = true;
            obj.Region = workspaceGoalRegion(endEffectorName,'EndEffectorOffsetPose',targetOrientation);
            obj.Region.Bounds = [-100 100; -100 100; -100 100; -pi pi; 0 0; 0 0];
            
            % Store a reference of the manipulatorStateSpace/RigidBodyTree
            % in the Robot property. Note that the RigidBodyTree property
            % of the manipulatorStateSpace is read-only. Hence, accessing
            % it will involve creating a copy of the underlying handle,
            % which can be expensive.
            obj.Robot = obj.RigidBodyTree;
            
            % Configure the IK solver
            obj.IKSolver = inverseKinematics('RigidBodyTree', obj.Robot);
            obj.IKSolver.SolverParameters.AllowRandomRestart = false;
        end

Customize Interpolation Method

During the planning phase, the interpolate function connects configurations in the search tree. By
default, the interpolation is unconstrained. Customize the interpolate function to ensure that the
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end-effector remains upright. Override the interpolate method on the manipulatorStateSpace
object with this code.

        function constrainedStates = interpolate(obj, state1, state2, ratios)
            constrainedStates = interpolate@manipulatorStateSpace(obj,state1,state2,ratios);
            if(obj.EnableConstraint)
                for i = 1:size(constrainedStates, 1)
                    constrainedStates(i,:) = constrainConfig(obj,constrainedStates(i,:));
                end
            end
        end

The constraintConfig function replaces the unconstrained joint configurations with constrained
configurations. It finds the end-effector pose closest to the constrained region [1] and returns the
corresponding robot joint configuration. Given the end-effector pose Ts

0 corresponding to config, the
function computes the pose closest to the end-effector pose in the constrained region and returns the
corresponding robot joint configuration.

To find the closest pose in the reference frame, first find the displacement of Ts
0 from the region by

calculating Ts′
w = Tw

0−1Ts
0 Te

w−1 and converting Ts′
w to a pose vector close to the bounds of the region.

Given the bounds, there are three possibililties for an element in the pose vector and its
corresponding bounds of the region:

1 The value is within bounds. In this case the element remains unchanged as the pose element is
within the region.

2 The value is greater than the maximum value of the bound. In this case, clip it to the max value of
the bound.

3 The value is lesser than the min value of the bound. In this case, clip it to the min value of the
bound.

Once the resulting closest constrained pose is found in the reference frame, convert this to a pose in
the world coordinates.

        function constrainedConfig = constrainConfig(obj, config)
            %constrainConfig Constraint joint configuration to the region
            %   The function finds the joint configuration corresponding to
            %   the end-effector pose closest to the constrained region.
            wgr = obj.Region;
            T0_s = obj.Robot.getTransform(config, wgr.EndEffectorName);
            T0_w = wgr.ReferencePose;
            Tw_e = wgr.EndEffectorOffsetPose;
            Tw_sPrime = T0_w \ T0_s / Tw_e;
            dw = convertTransformToPoseVector(obj, Tw_sPrime);
            bounds = wgr.Bounds;
            
            % Find the pose vector closeset to the bounds of the region.
            for dofIdx = 1:6
                if(dw(dofIdx) < bounds(dofIdx, 1))
                    dw(dofIdx) = bounds(dofIdx, 1);
                elseif(dw(dofIdx) > bounds(dofIdx, 2))
                    dw(dofIdx) = bounds(dofIdx, 2);
                end
            end
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            % Convert the pose vector in the region's reference frame to a
            % homogeneous transform.
            constrainedPose = obj.convertPoseVectorToTransform(dw);
            
            % Convert this pose to world coordinates, and find the
            % corresponding joint configuration.
            constrainedPose = T0_w * constrainedPose * Tw_e;
            constrainedConfig = obj.IKSolver(obj.Region.EndEffectorName, ...
                constrainedPose,  ...
                ones(1, 6), ...
                config);
        end

Create Robot State Space

Now that you have setup your constrained state space, load an example robot and environment using
the exampleHelperEndEffectorConstraintedEnvironment function. The output kinova is a
rigid body tree robot model of the KINOVA™ Gen 3 and env is a cell array of collision body objects in
the robot world.

[kinova,env] = exampleHelperEndEffectorConstrainedEnvironment;

Specify the end-effector name and target orientation. Store the joint position values for opening and
closing the gripper.

endEffectorName = "EndEffector_Link";
targetOrientation = eul2tform([0 pi 0]);
openPostion = 0.06;
closedPosition = 0.04;

Create the customized state space.

ss = exampleHelperConstrainedStateSpace(kinova, endEffectorName, targetOrientation);

Specify state bounds on the gripper position so it remains open.

ss.StateBounds(end-1:end,:) = repmat([openPostion, openPostion], 2, 1);

Visualize the constrained workspaceGoalRegion region.

figure;
show(ss.Region)
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Create State Validator

Create a manipulatorCollisionBodyValidator object from the state space and add the
environment of collision objects. To improve performance, ignore self collisions when valdiating the
state space. The robot model uses joint limits to ensure that self collisions will not occur.

sv = manipulatorCollisionBodyValidator(ss,"Environment",env);
sv.IgnoreSelfCollision = true;

Create Planner

This example uses the plannerBiRRT object, which is a bi-directional variant of the RRT algorithm
with the "connect" heuristic enabled. For a sparse environment, this planner finds a solution in lesser
number of iterations as compared to other RRT-based planners . Alternatively, for shorter paths with
trimmed edges, consider the plannerRRTStar object.

The robot starts in a joint configuration which satisfies the constraint. Alternatively, the
interpolate function of the constrained state space can be used to constrain the start
configuration. This ensures that all the states in the resulting plan are constrained. Set the random
number seed for repeatable results.

rng(20);
planner = plannerBiRRT(ss, sv);
planner.MaxConnectionDistance = 0.5;
planner.EnableConnectHeuristic = true;
startConfig = [0.1196 -0.045 -0.1303 1.6528 -0.0019 1.5032 0.0083, openPostion, openPostion];
figure("Visible","on");
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show(kinova, startConfig, ...
    "Visuals", "off", ...
    "Collisions", "on", ...
    "PreservePlot", true);

Define Grasp Region

Next, define a grasping region using the workspaceGoalRegion object which represents a cylinder
to pick in the environment (env{3}). Generate a joint configuration for a sampled end-effector pose.
You should ensure that the configuration passed to the planner is collision-free.

graspingRegion = workspaceGoalRegion(endEffectorName);

% Attach the reference frame to the pose of the cylinder object.
graspingRegion.ReferencePose = env{3}.Pose;

% Define the offset of the end-effector relative to the target orientation.
graspingRegion.EndEffectorOffsetPose = trvec2tform([0, 0, 0.07]) * targetOrientation;

% Generate goal joint configuration of the robot given a sampled end-effector pose in
% the region.
goalConfig = jointConfigurationGiven(ss,sample(graspingRegion));
goalConfig(end-1:end) = openPostion;

Plan Path

Call the plan function to plan a path between the start and goal configurations. Time the planning
phase. Interpolate the path to 50 points.
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tic;
pickPath = plan(planner,startConfig,goalConfig);
tOut = toc;
interpolate(pickPath,50);
fprintf(newline);
fprintf("Planning finished in %d s\n", tOut);

Planning finished in 1.786575e+00 s

Visualize the planned path. The robot moves to the container to grab it.

hold on;
ylim([-1 0.5])
zlim([-0.25 1])
for i  = 1:length(env)
    show(env{i})
end
for i = 1:size(pickPath.States, 1)
    show(kinova, pickPath.States(i, :), ...
        "Visuals", "on", ...
        "FastUpdate",true, ...
        "Frames", "off", ...
        "PreservePlot",false);
    drawnow;
end
exampleHelperConstrainedRobotMoveGripper(kinova,...
    pickPath.States(end,:),openPostion,closedPosition);
hold off;
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Recreate Planner

Attach the collision geometry of the can to the end-effector and remove the can from the
environment. Then, with the modified robot, create a planning instance with the new robot model.
After planning, you could unceck ss.EnableContraint and rerun this script to see a path without a
constrainted end effector.

zOffset = [0 0 (env{3}.Length)/2];
container = env{3};
addCollision(kinova.getBody(endEffectorName),env{3}, (env{3}.Pose) \ trvec2tform(zOffset));
env(3) = [];
ss = exampleHelperConstrainedStateSpace(kinova,endEffectorName,targetOrientation);

% Keep the end-effector closed during planning
ss.StateBounds(end-1:end,:) = repmat([0.04 0.04],2,1);
sv = manipulatorCollisionBodyValidator(ss, ...
    "Environment",env,"ValidationDistance",0.2);
planner = plannerBiRRT(ss,sv);
planner.MaxConnectionDistance = 1;
planner.EnableConnectHeuristic = true;

ss.EnableConstraint = ;

Plan Path

Next, plan from the last configuration in the previous path to a new goal joint configuration. The goal
configuration places the can on the opposite table in the environment.

% The last state of the of the previous plan
startConfig = pickPath.States(end,:);
startConfig(end-1:end) = 0.04;
goalConfig = [1.1998 0.6044 0.0091 1.4219 -0.0058 1.1154 0.0076 0.04 0.04];
rng(10);
tic
placePath = plan(planner,startConfig,goalConfig);
tOut = toc;
fprintf("Planning finished in %0.2d s\n",tOut);

Planning finished in 4.07e+00 s

interpolate(placePath,50);

Visualize the path that places the container. Notice that the can remains upright throughout the path.

show(kinova, startConfig, ...
    "FastUpdate", false, ...
    "PreservePlot", false);
view([90,0,15])
ylim([-1 0.5])
zlim([-0.25 1])
hold on;
for i  = 1:length(env)
    show(env{i})
end
containerPose = hgtransform();
containerPose.Matrix = container.Pose;
[ax, p] = show(container);
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p.FaceColor = [0 0 1];
p.Parent = containerPose;
for i = 1:size(placePath.States, 1)
    cPose = getTransform(kinova,placePath.States(i, :),endEffectorName);
    containerPose.Matrix = cPose/(container.Pose)*trvec2tform(zOffset);
    show(kinova,placePath.States(i,:), ...
        "FastUpdate",true, ...
        "PreservePlot",false, ...
        "Frames", "off");
    drawnow;
end
exampleHelperConstrainedRobotMoveGripper(kinova,...
    placePath.States(end,:),closedPosition,openPostion);
hold off;

Next Steps

To see an unconstrained path, uncheck the ss.EnableConstraint checkbox and rerun the script.
The cup tilts in a way that could easily spill the contents. You could also consider replacing the
plannerBiRRT object with another sampling-based planner like plannerRRTStar to evaluate their
performance.
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Manipulator Shape Tracing in MATLAB and Simulink
This example shows how to trace a predefined 3-D shape in space. Following a smooth, distinct path
is useful in many robotics applications such as welding, manufacturing, or inspection. A 3-D
trajectory is solved in the task space for tracing the MATLAB® membrane and is executed using the
Sawyer robot from Rethink Robotics®. The goal is to generate a smooth path for the end effector of
the robot to follow based on a set waypoints.

The “Manipulator Shape Tracing in MATLAB and Simulink” on page 1-333 example shows how to
generate a closely discretized set of segments that can then be passed to an inverse kinematics solver
to be solved using an iterative solution. However, this example offers an alternate approach to reduce
computational complexity. This example splits path segments into just a few discrete points and uses
smoothing functions to interpolate between the waypoints. This approach should generate a smoother
trajectory and improve run-time efficiency.

Load the Robot

This example uses the Sawyer robot from Rethink Robotics®. Import the URDF file that specifies the
rigid body dynamics. Set the DataFormat to use column vectors to define robot configurations.
Simulink® uses column vectors. The task space limits are defined based on empirical data.

sawyer = importrobot('sawyer.urdf');
sawyer.DataFormat = 'column';
taskSpaceLimits = [0.25 0.5; -0.125 0.125; -0.15 0.1];
numJoints = 8; % Number of joints in robot

Generate a Set of Task-Space Waypoints

For this example, the goal is to get a set of path segments that trace the MATLAB® membrane logo.
The membrane surface and the path segments are generated as cell arrays using the helper function
generateMembranePaths. To visualize the paths overlaid on the surface, plot the surface using
surf and the path segments by iterating through the path segment cell array. You can increase
numSamples to sample more finely across the surace.

numSamples = 7;
[pathSegments, surface] = generateMembranePaths(numSamples, taskSpaceLimits);

% Visualize the output
figure
surf(surface{:},'FaceAlpha',0.3,'EdgeColor','none');
hold all
for i=1:numel(pathSegments)
    segment = pathSegments{i};
    plot3(segment(:,1),segment(:,2),segment(:,3),'x-','LineWidth', 2);
end
hold off
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To ensure that the robot can trace the output, visualize the shape in the robot workspace. Show the
sawyer robot and plot the line segments in the same figure.

figure
show(sawyer);
hold all

for i=1:numel(pathSegments)
    segment = pathSegments{i};
    plot3(segment(:,1),segment(:,2),segment(:,3),'x-','LineWidth',2);
end

view(135,20)
axis([-1 1 -.5 .5 -1 .75])
hold off
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Create an Inverse Kinematics Solver

Create an inverse kinematics (IK) using the loaded sawyer rigid body tree . It is initially configured
with a uniform set of weights, using the home configuration as the initial guess. Set the initial guess
to the home configuration and the pose tolerances with uniform weights. The end effector for IK
solver is the 'right_hand' body of the robot.

ik = inverseKinematics('RigidBodyTree', sawyer);
initialGuess = sawyer.homeConfiguration;
weights = [1 1 1 1 1 1];
eeName = 'right_hand';

Convert Task-Space Waypoints to Joint-Space Using Inverse Kinematics

Use the inverse kinematics solver to generate a set of joint space waypoints, which give the joint
configurations for the robot at each point of the generated pathSegments. Each joint-space segment
is filed into a matrix, jointPathSegmentMatrix, which is passed to the Simulink model as an input.

% Initialize the output matrix
jointPathSegmentMatrix = zeros(length(pathSegments),numJoints,numSamples);

% Define the orientation so that the end effector is oriented down
sawyerOrientation = axang2rotm([0 1 0 pi]);

% Compute IK at each waypoint along each segment
for i = 1:length(pathSegments)
    currentTaskSpaceSegment = pathSegments{i};
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    currentJointSegment = zeros(numJoints, length(currentTaskSpaceSegment));
    for j = 1:length(currentTaskSpaceSegment)
        pose = [sawyerOrientation currentTaskSpaceSegment(j,:)'; 0 0 0 1];
        currentJointSegment(:,j) = ik(eeName,pose,weights,initialGuess);
        initialGuess = currentJointSegment(:,j);
    end
    
    jointPathSegmentMatrix(i, :, :) = (currentJointSegment);
end

Load Simulink Model

Use the shapeTracingSawyer model to execute the trajectories and simulate them on a kinematic
model of the robot.

open_system("shapeTracingSawyer.slx")

The Simulink model has two main parts:

1 The Trajectory Generation section takes the matrix of joint-space path segments,
jointPathSegmentMatrix, and converts the segments to a set of discretized joint-space waypoints
(joint configurations) at each time step in the simulation using a MATLAB function block. The
Polynomial Trajectory Block converts the set of joint configurations to a smoothed joint space
B-spline trajectory in time.

2 The Robot Kinematics Simulation section accepts the joint-space waypoints from the
smoothed trajectory and computes the resulting end-effector position for the robot.

Trajectory Generation
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Robot Kinematics Simulation

Execute Joint-Space Trajectories in Simulink

Simulate the model to execute the generate trajectories.

sim("shapeTracingSawyer.slx")

View Trajectory Generation Results

The model outputs the robot joint configurations and the end-effector positions along each smoothed
path trajectory. To work easily with MATLAB plotting tools, reshape the data.

% End effector positions
xPositionsEE = reshape(eePosData.Data(1,:,:),1,size(eePosData.Data,3));
yPositionsEE = reshape(eePosData.Data(2,:,:),1,size(eePosData.Data,3));
zPositionsEE = reshape(eePosData.Data(3,:,:),1,size(eePosData.Data,3));

% Extract joint-space results
jointConfigurationData = reshape(jointPosData.Data, numJoints, size(eePosData.Data,3));

Plot the new end-effector positions on the original membrane surface.

figure
surf(surface{:},'FaceAlpha',0.3,'EdgeColor','none');
hold all
plot3(xPositionsEE,yPositionsEE,zPositionsEE)
grid on
hold off
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Visualize Robot Motion

In addition to the visualization above, the tracing behavior can be recreated using the Sawyer robot
model. Iterate through the joint configurations in jointConfigurationData to visualize the robot
using show and continuously plot the end-effector position in 3-D space.

% For faster visualization, only display every few steps
vizStep = 5;

% Initialize a new figure window
figure
set(gcf,'Visible','on');

% Iterate through all joint configurations and end-effectort positions
for i = 1:vizStep:length(xPositionsEE)
    show(sawyer, jointConfigurationData(:,i),'Frames','off','PreservePlot',false);
    hold on
    plot3(xPositionsEE(1:i),yPositionsEE(1:i),zPositionsEE(1:i),'b','LineWidth',3)
    
    view(135,20)
    axis([-1 1 -.5 .5 -1 .75])
    
    drawnow
end
hold off
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Generate Code for Manipulator Motion Planning in Perceived
Environment

This example shows how to generate code for planning manipulator motion in a perceived
environment. Perceived environments can have a variable number of collision objects that can be a
combination of heterogeneous types (spheres, cylinders, meshes, and boxes). This example uses the
convertToCollisionMesh function to homogenize the cell array of collision objects by converting
the primitive type objects to their mesh equivalents.

Set Up Robot and Environment

In this example, you generate a MEX function for a MATLAB function that uses a manipulatorRRT
object to plan for a Kinova Gen 3 robot.

Load Robot Model

Create a rigid body tree object to model the robot. For this example, load a Kinova Gen3 manipulator.

kinova = loadrobot("kinovaGen3",DataFormat="row");

Create Environment

Real perception subsystems can output a structure that specifies the type of perceived geometry, its
dimensions, and the pose of the object in the base frame of the robot. To simulate this, first create a
structure to contain collision objects.

geomStructType = struct("Type",exampleHelperCollisionEnum.Box, ...
                  "X",0, ...
                  "Y",0, ...
                  "Z",0, ...
                  "Vertices",coder.typeof(zeros(3),[inf 3],[1 0]), ...
                  "Radius",0, ...
                  "Height",0, ...
                  "Pose",eye(4));
geomStruct = geomStructType;
geomStruct.Vertices=zeros(3);

Next create a cylinder, a box, and two spheres, as perceived by a perception subsystem.

Use geomStruct as the framework to create a perceived box with X, Y, and Z lengths of 1, 1, and
0.1, respectively.

boxGeom= geomStruct;
boxGeom.Type = exampleHelperCollisionEnum.Box;
boxGeom.X = 1;
boxGeom.Y = 1;
boxGeom.Z = 0.1;
boxGeom.Pose = trvec2tform([0 0 -0.051]);

Create a perceived cylinder of radius 1 and height 0.1.

cylinderGeom = geomStruct;
cylinderGeom.Type=exampleHelperCollisionEnum.Cylinder;
cylinderGeom.Radius=0.1;
cylinderGeom.Height=1.0;
cylinderGeom.Pose=trvec2tform([0.5 0.3 0.50]);
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Create two perceived spheres, each with a radius of 0.1.

sphere1Geom = geomStruct;
sphere1Geom.Type=exampleHelperCollisionEnum.Sphere;
sphere1Geom.Radius=0.1;
sphere1Geom.Pose=trvec2tform([0.4 0.4 0.4]);
sphere2Geom = geomStruct;
sphere2Geom.Type=exampleHelperCollisionEnum.Sphere;
sphere2Geom.Radius=0.1;
sphere2Geom.Pose=trvec2tform([-0.4 0.4 0.4]);

Set Up Planning Variables

The, exampleHelperVariableHeterogeneousPlanner helper function accepts the start and goal
joint configurations of the robot, as well as an array of structure elements representing the
environment. In this example, the start and goal joint configurations are set arbitrarily, but you can
set them as necessary.

startConfig = [-0.0035 1.4453 0.0334 0.0144 -0.0294 1.0600 -0.0077];
goalConfig = [-1.1519 1.5243 0.3186 0.0009 0.2466 1.2090 -1.1952];
env1 = [boxGeom cylinderGeom sphere1Geom sphere2Geom];

Visualize the start configuration of the robot in the perceived environment env1.

figure(Name="Env1",Visible="on",Units="normalized",OuterPosition=[0 0 1 1])
exampleHelperVisualizeVarSizeEnvironment(env1,kinova,startConfig);
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Generate Code for Planning

In order to generate a MEX function, exampleHelperVariableHeterogeneousPlanner_mex,
from the MATLAB function exampleHelperVariableHeterogeneousPlanner, run this command:

codegen("exampleHelperVariableHeterogeneousPlanner", ...
    "-args",{startConfig,goalConfig,coder.typeof(geomStruct,[1 inf],[0 1])})

The variable_dims argument of coder.typeof (Fixed-Point Designer) specifies that the input row
vector geomStruct of the entry-point planning function can have an unbounded and variable-sized
second dimension.

Plan Collision-Free Path

Next, use the planner entry-point helper function to output a geometric collision-free plan.

planInEnv1=exampleHelperVariableHeterogeneousPlanner(startConfig,goalConfig,env1);

You can also reuse the exampleHelperVariableHeterogeneousPlanner for a different perceived
environment. Plan in a new environment, env2, created by removing cylinderGeom and
sphereGeom from env1.
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env2=[boxGeom,sphere2Geom];
planInEnv2=exampleHelperVariableHeterogeneousPlanner(startConfig,goalConfig,env2);

MEX function for planning in env2, and do not need to generate it again. It has the same behavior
exampleHelperVariableHeterogeneousPlanner, but results in shorter planning times.

To use the MEX function instead, run this code:

planInEnv1 = exampleHelperVariableHeterogeneousPlanner_mex(startConfig,goalConfig,env1);
env2 = [boxGeom sphere2Geom];
planInEnv2 = exampleHelperVariableHeterogeneousPlanner_mex(startConfig,goalConfig,env2);

Visualize Planned Path

Visualize the planned output in both env1 and env2.

figure(Name="Planned path in env1",Visible="on",Units="normalized",OuterPosition=[0,0,1,1])
exampleHelperVisualizeVarSizeEnvironment(env1,kinova,planInEnv1);

figure(Name="Planned path in env2",Visible="on",Units="normalized",OuterPosition=[0,0,1,1])
exampleHelperVisualizeVarSizeEnvironment(env2,kinova,planInEnv2);
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Supporting Functions

Planner Entry Point Function

exampleHelperVariableHeterogeneousPlanner plans motion in the perceived environment of a
Kinova Gen 3 robot workspace. The helper function accepts the perceived environment as the
geomStructs argument, which is an array of structures where each element contains the
information used to represent a collision object.

The input structure array geomStructs is variable in size and consists of structure elements that
each represent the collision geometry defined by the Type field of the structure. The Type field
stores an enumeration, exampleHelperCollisionEnum, specifiying whether the perceived object is
a Box, Sphere, Cylinder or Mesh. For more information on how to construct a collision object
structure, see Create Environment on page 1-0 .

The second manipulatorRRT input argument can hold up to 100 objects. Upper bounding is
necessary to enable construction of collision objects collisionBox, collisionCylinder,
collisionSphere, collisionMesh inside a for loop.

function interpolatedPlan = exampleHelperVariableHeterogeneousPlanner(start,goal,geomStructs)
%This function is for internal use only and may be removed in the future.
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%exampleHelperVariableHeterogeneousPlanner Plan in a perceived environment of a Kinova Gen 3 robot
%   INTEPROLATEDPLAN=exampleHelperVariableHeterogeneousPlanner(START,GOAL,GEOMSTRUCTS)
%   Outputs a collision free geometric plan, INTEPROLATEDPLAN, of a Kinova
%   Gen3 robot in an environment defined by GEOMSTRUCTS which is a variable
%   sized array of struct elements that capture the information of a
%   collision geometry in the environment. Each struct element in
%   GEOMSTRUCTS is of the form:
%       geomStruct=struct("Type",exampleHelperCollisionEnum.Box,...
%                 "X",0, ...
%                 "Y",0, ...
%                 "Z",0, ...
%                 "Vertices",zeros(3),...
%                 "Radius",0, ...
%                 "Height",0, ...
%                 "Pose",eye(4));
%   START and GOAL are the start and goal joint configurations of the
%   robot, respectively, and are specified as a row vector.

%Copyright 2021 The MathWorks, Inc.
    
    % Create a placeholder variable for environment which is a cell-array
    % of collision meshes with vertices that are variably sized. The size
    % of the environment is that of the input array of collision geometry
    % struct elements.
    coder.varsize("vertices",[inf 3],[1 0]);
    vertices = zeros(3);
    env = repmat({collisionMesh(vertices)},1,length(geomStructs));

    % Load the rigid body tree for which the planner will be defined.
    rbt = loadrobot("kinovaGen3",DataFormat="row");

    % Set up the environment. The maximum number of collision objects that
    % the environment can hold is 100.
    for i = coder.unroll(1:100)
        if (i <= length(geomStructs))

            % For each struct element, create the corresponding collision
            % object (collisonBox, collisionCylinder, collisionSphere, or
            % collisionMesh) and convert that to its corresponding mesh
            % equivalent thereby homogenizing the environment.
            s = geomStructs(i);
            if s.Type == exampleHelperCollisionEnum.Box
                env{i} = convertToCollisionMesh( ...
                    collisionBox(s.X,s.Y,s.Z));
            elseif s.Type == exampleHelperCollisionEnum.Sphere
                env{i} = convertToCollisionMesh( ...
                    collisionSphere(s.Radius));
            elseif s.Type == exampleHelperCollisionEnum.Cylinder
                env{i} = convertToCollisionMesh( ...
                    collisionCylinder(s.Radius,s.Height));
            elseif s.Type == exampleHelperCollisionEnum.Mesh
                env{i} = collisionMesh(s.Vertices);
            end

            % Assign the pose of the element.
            env{i}.Pose = s.Pose;
        end
    end
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    % Create and set up the planner from the rigid body tree and
    % environment.
    planner = manipulatorRRT(rbt,env);
    planner.MaxConnectionDistance=0.4;
    planner.ValidationDistance=0.05;

    % For repeatable results, seed the random number generator and store
    % the current seed value.
    prevseed = rng(0);

    % Plan and interpolate.
    planOut = planner.plan(start,goal);
    interpolatedPlan = planner.interpolate(planOut);

    % Restore the random number generator to the previously stored seed.
    rng(prevseed);
end
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Generate Code for Inverse Kinematics Computation Using
Robot from Robot Library

This example shows how to perform code generation to compute Inverse Kinematics (IK) using robots
from the robot library. For this example, you can use an inverseKinematics object with an
included rigidBodyTree robot model using loadrobot to solve for robot configurations that
achieve a desired end-effector position.

A circular trajectory is created in a 2-D plane and given as points to the generated MEX inverse
kinematics solver. The solver computes the required joint positions to achieve this trajectory. Finally,
the robot is animated to show the robot configurations that achieve the circular trajectory.

Write Algorithm to Solve Inverse Kinematics

Create a function, ikCodegen, that runs the inverse kinematics algorithm for a KINOVA® Gen3
robot model created using loadrobot.

function qConfig = ikCodegen(endEffectorName,tform,weights,initialGuess)
    %#codegen
    robot = loadrobot("kinovaGen3","DataFormat","row");
    ik = inverseKinematics('RigidBodyTree',robot);
    [qConfig,~] = ik(endEffectorName,tform,weights,initialGuess); 
end

The algorithm acts as a wrapper for a standard inverse kinematics call. It accepts standard inputs,
and returns a robot configuration solution vector. Since you cannot use a handle object as the input or
output to a function that is supported for code generation. Load the robot inside the function. Save
the ikCodegen function in your current folder.

Verify Inverse Kinematics Algorithm in MATLAB

Verify the IK algorithm in MATLAB before generating code.

Load a predefined KINOVA® Gen3 robot model as rigidBodyTree object. Set the data format to
"row".

robot = loadrobot("kinovaGen3","DataFormat","row");

Show details of the robot.

showdetails(robot)

--------------------
Robot: (8 bodies)

 Idx               Body Name         Joint Name         Joint Type               Parent Name(Idx)   Children Name(s)
 ---               ---------         ----------         ----------               ----------------   ----------------
   1           Shoulder_Link          Actuator1           revolute                   base_link(0)   HalfArm1_Link(2)  
   2           HalfArm1_Link          Actuator2           revolute               Shoulder_Link(1)   HalfArm2_Link(3)  
   3           HalfArm2_Link          Actuator3           revolute               HalfArm1_Link(2)   ForeArm_Link(4)  
   4            ForeArm_Link          Actuator4           revolute               HalfArm2_Link(3)   Wrist1_Link(5)  
   5             Wrist1_Link          Actuator5           revolute                ForeArm_Link(4)   Wrist2_Link(6)  
   6             Wrist2_Link          Actuator6           revolute                 Wrist1_Link(5)   Bracelet_Link(7)  
   7           Bracelet_Link          Actuator7           revolute                 Wrist2_Link(6)   EndEffector_Link(8)  
   8        EndEffector_Link        Endeffector              fixed               Bracelet_Link(7)   
--------------------
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Specify the end-effector name, the weights for the end-effector transformation, and the initial joint
positions.

endEffectorName = 'EndEffector_Link';
weights = [0.25 0.25 0.25 1 1 1];
initialGuess = [0 0 0 0 0 0 0];

Call the inverse kinematics solver function for the specified end-effector transformation.

targetPose = trvec2tform([0.35 -0.35 0]);
qConfig = ikCodegen(endEffectorName,targetPose,weights,initialGuess)

qConfig = 1×7

    1.3085    2.2000   -1.3011    1.0072   -1.1144    2.0500   -3.2313

Visualize the robot with the computed robot configuration solution.

figure;
show(robot,qConfig);
hold all
plotTransforms(tform2trvec(targetPose),tform2quat(targetPose),"FrameSize",0.5);

Generate Code for Inverse Kinematics Algorithm

You can use either the codegen (MATLAB Coder) function or the MATLAB Coder (MATLAB Coder)
app to generate code. For this example, generate a MEX file by calling codegen at the MATLAB
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command line. Specify sample input arguments for each input to the function using the -args input
argument.

Call the codegen function and specify the input arguments in a cell array. This function creates a
separate ikCodegen_mex function to use. You can also produce C code by using the options input
argument. This step can take some time.

codegen ikCodegen -args {endEffectorName,targetPose,weights,initialGuess}

Code generation successful.

Verify Results Using Generated MEX Function

Call the MEX version of the IK solver for the specified transform.

targetPose = trvec2tform([0.35 -0.35 0]);
qConfig = ikCodegen_mex(endEffectorName,targetPose,weights,initialGuess)

qConfig = 1×7

    1.3084    2.2000   -1.2999    1.0092    2.0277   -2.0500   -0.0872

Visualize the robot with the robot configuration computed using the MEX version of the IK solver.

figure;
show(robot,qConfig);
hold all
plotTransforms(tform2trvec(targetPose),tform2quat(targetPose),"FrameSize",0.5);
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Compute Inverse Kinematics with MEX function

Use the generated MEX function to compute the Inverse Kinematics solution to achieve a trajectory.

Define Trajectory

Create a circular trajectory.

t = (0:0.2:10)'; % Time
count = length(t);
center = [0.3 0.3 0];
radius = 0.15;
theta = t*(2*pi/t(end));
points = center + radius*[cos(theta) sin(theta) zeros(size(theta))];

Inverse Kinematics Solution

Preallocate configuration solutions as a matrix qs. Specify the weights for the end-effector
transformation and the end-effector name.

q0 = [0 0 0 0 0 0 0];
ndof = length(q0);
qs = zeros(count,ndof);
weights = [0 0 0 1 1 1];
endEffector = 'EndEffector_Link';

Loop through the trajectory of points to trace the circle. Use the ikCodegen_mex function to
calculate the solution for each point to generate the joint configuration that achieves the end-effector
position. Store the configurations for later use.

qInitial = q0; % Use home configuration as the initial guess
for i = 1:count
    % Solve for the configuration satisfying the desired end-effector
    % position
    point = points(i,:);
    qSol = ikCodegen_mex(endEffector,trvec2tform(point),weights,qInitial);
    % Store the configuration
    qs(i,:) = qSol;
    % Start from prior solution
    qInitial = qSol;
end

Animate Solution

Once you generate all the solutions, animate the results. You must recreate the robot because it was
originally defined inside the function. Iterate through all the solutions. Set the "FastUpdate" option
of the show method to true to get a smooth animation.

robot = loadrobot("kinovaGen3","DataFormat","row");
% Show first solution and set view.
figure
show(robot,qs(1,:));
view(3)
ax = gca;
ax.Projection = 'orthographic';
hold on
plot(points(:,1),points(:,2),'k')
axis([-0.1 0.7 -0.3 0.5])
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% Iterate through the solutions
framesPerSecond = 15;
r = rateControl(framesPerSecond);
for i = 1:count
    show(robot,qs(i,:),'PreservePlot',false,"FastUpdate",true);
    drawnow
    waitfor(r);
end
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Design Trajectory with Velocity Limits Using Trapezoidal
Velocity Profile

This example shows how to use the trapezoidal velocity profile to design a trajectory with input
bounds rather than parameters.

The trapveltraj function creates trajectories with trapezoidal velocity profiles. These trajectories
follow a three-segment path of acceleration, constant velocity, and deceleration between all of their
waypoints. You can alter these trajectories by specifying parameters to construct your desired profile,
but there are many applications require a set of bounds instead, such as limits on acceleration or
velocity. In such applications, you must first translate these bounds into a parameterized trajectory
that is both feasible and satisfies the expected bounds. In this example, use the
helperProfileForMaxVel helper function to create feasible trapezoidal profiles given a velocity
bound.

Basic trapveltraj Usage

If only the acceleration, constant velocity, and deceleration are known, you can create a trapezoidal
velocity profile trajectory by interpolating the waypoints along each dimension using the specified
parameters.

% Define a set of 2-D waypoints and connect them using a trapezoidal
% profile where each segment has a duration of 1 second
wpts = [-1 1 .3; 1 1 -1];
[q,qd,qdd,t] = trapveltraj(wpts,100,EndTime=1);

Visualize the results by using the helperPlotTaskSpaceTraj helper function, which creates a
figure that plots the 2-D trajectory on the left and the position and velocity with respect to time on
the right. Since all of the end times match, this trajectory hits both its vertical and horizontal
waypoints simultaneously, making it suitable for numerous applications.

tpts = 0:size(wpts,2)-1;
helperPlotTaskSpaceTraj("EndTime = 1",t,q,qd,wpts,tpts);
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Determine Limitations Using Profile Parameters as Bounds

Try to create a trajectory for a two-degree-of-freedom (2-DoF) robot where the maximum joint
velocity is 0.5 rad/s, using the same waypoints. Specify the peak velocity of the trajectory as 0.5.
This sets a specified velocity to achieve in each segment of the trajectory, and because the distances
between waypoints can vary across dimensions, each dimension may have a different segment length.
This can create unintended results.

Visualize the results. The generated trajectory is acceptable if the AI must only connect the first and
last waypoints in time, but the different segment lengths along dimensions, can make it insufficient
for additional tasks, such as collision avoidance, or if using the trajectory to meet points in 3-D space.
If the trajectory must meet every waypoint, you can improve it by specifying the end time. This
ensures that each segment has the same length.

[q,qd,qdd,t] = trapveltraj(wpts,100,PeakVelocity=0.5);
helperPlotTaskSpaceTraj("PeakVelocity = 0.5 rad/s",t,q,qd,wpts);
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Trapezoidal Velocity Profile Overview

The trapezoidal velocity profile trajectory connects waypoints using a motion profile that stops at
each waypoint, and where the waypoint-to-waypoint motion is governed by the following motion
profile:
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As shown in the image above, the velocity profile has four parameters:

• End Time — Duration of each segment between two waypoints
• Peak Velocity — Peak velocity for a each segment
• Acceleration Time — Time spent in the acceleration and deceleration phases of each segment
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• Peak Acceleration — Magnitude of the acceleration applied during the acceleration and
deceleration phases of each segment

You can fully define a profile by specifying two of these. When you provide only one parameter,
trapveltraj automatically assigns a second parameter so that the average velocity of each
segment is halfway between the two allowable bounds detailed in Constraints for Combining
Parameter Specifications on page 1-0 .

Mathematically, this profile defines segments on the interval [0, endTime], where each segment
has an acceleration phase, constant speed phase, and a deceleration phase. The lengths of the
acceleration and deceleration phases, accelTime, are equal.

1
Acceleration Phase — For t = [0, accelTime], d2

dt2
s t = a, d

dts t = at, s t = a t2
2

2 Constant Speed Phase — For t = [accelTime, endTime – accelTime],
d2

dt2
s t = 0, d

dts t = v, s t = vt − v2
2a

3 Deceleration Phase — For t = [endTime – accelTime, endTime],
d2

dt2
s t = − a, d

dts t = a endTime − t , s t =
2av * endTime − 2v2

2a − a2 t − endTime 2

Constraints for Combining Parameter Specifications

The profile design results in two limiting constraints. The magnitude of the peak velocity must be:

• Peak velocity must be greater than the average speed: peakVelocity > s endTime − s 0
endTime

• Peak velocity must be less than or equal to twice the average speed:
peakVelocity < 2 s endTime − s 0

endTime

These constraints are derived from the total segment length s = s End Time − s 0 , which is fixed
with any two waypoints and results from the integral of the velocity, i.e. the area of the trapezoid:
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The first constraint sets the lowest allowable peak velocity magnitude. This occurs when the motion
spends the most amount of time at constant speed:
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In the second case, the acceleration and deceleration phases are infinitesimal, resulting in a nearly
rectangular velocity profile that has a total area A = Width * Length , or
s = peakVelocity * endTime . Hence for this case to succeed, the the magnitude of the peak

velocity must equal the average speed s
endTime . In practice, the acceleration / deceleration phases can

never be truly infinitesimal (Acceleration Time > 0), which instead makes this an inequality
constraint: peakVelocity > s

endTime .

The second constraint defines the highest allowable peak velocity. This occurs when the motion
spends as much time as possible accelerating to a peak velocity:
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In this situation, there is no constant speed phase, resulting in a triangular velocity profile, which has
a total area A = Height * Length

2  or s = Peak Velocity * End Time
2 . Therefore in this extreme, the

magnitude of the peak velocity must equal twice the peak speed, resulting in the second constraint,
Peak Velocity > 2 s

endTime .

These two constraints define the viable range of trapezoidal velocity profiles for a given segment. The
following graphic compares three such trajectories, with the first constraint shown using dotted lines,
the second shown with dashed lines, and an example of a trapezoidal profile within these constraints
shown as a solid line. All plausible trapezoidal profile trajectories for this segment must fall beteen
the dotted and dashed lines, as some variation of the solid line example.
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Limitations on Parameter Combinations

In general, any two of the four defining parameters (End Time, Peak Velocity, Peak Acceleration,
Acceleration Time) can be used together, but you must ensure that it is possible to generate feasible
trajectories within the limits of the profile. For example, suppose there is a segment between point 0
and 1 rad, and the desired segment duration is 1 second.

[q,qd]=trapveltraj([0 1],100,'EndTime',1,'PeakVelocity',1);

Given the constraints derived above, for the segment from s = 0 to s = 1, the constraints imply that:
Peak Velocity End Time > 1 and Peak Velocity End Time < 2, whereas with the values used above,

the first condition is not met. This could be resolved e.g. by raising the peak velocity to 1.5.

Limitations can also arise because the constraints work for one dimension of a segment, but not for
all of them. For example, suppose there is a segment between [0 0] and [1 2], with assigned values for
the segment duration and peak velocity:

[q,qd]=trapveltraj([0 1; 0 2],100,'EndTime',1,'PeakVelocity',1.5);

This will fail because the constraints only work for the first dimension:

• For the first dimension, from s = 0 to s = 1, the constraints imply that:
Peak Velocity End Time > 1 and Peak Velocity End Time < 2

• For the second dimension, from s= 0 to s = 2, the constraints imply that:
Peak Velocity End Time > 2 and Peak Velocity End Time < 4

It is evident that these constraints cannot be met if the same values are used for both dimensions.
Instead, it is necessary to use different peak velocities for each dimension to ensure that the
waypoints can be hit with the same end times. For example, the following solution works:
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wpts2 = [0 1; 0 2];
[q,qd,qdd,t]=trapveltraj(wpts2,100,'EndTime',1,'PeakVelocity',[1.5; 2.5]);
helperPlotTaskSpaceTraj('Different Peak Velocities for each Dimension',t,q,qd,wpts2);

Choosing parameters that satisfy all constraints along each dimension can be challenging. In the next
section, a helper function is instead created to help simplify this process.

Create a Helper Function to Translate Velocity Bounds to Profile Parameters

The helperProfileForMaxVel helper function accepts a limiting segment velocity and outputs a
set of end times and velocities that ensure all dimensions have the same segment length, and that the
maximum velocity of any segment is less than or equal to the specified velocity maximum.

function [endTimes,peakVels] = helperProfileForMaxVel(wpts,maxVelocity)
    %   helperProfileForMaxVel Generate parameters for a trapezoidal velocity profile so it will meet velocity constraints
    %   
    %   This function creates a fast trapezoidal profile with a specified velocity limit as an upper bound.
    %   Copyright 2021 The MathWorks, Inc.
    
    % Check that maxVelocity is a scalar
    validateattributes(maxVelocity,{'numeric'},{'scalar'});

    % Find segment lengths along each dimension of waypoints.
    segLengths = abs(diff(wpts,1,2));

    % Find minimum endTime by assigning maximum velocity to longest segment
    maxSegLengths = max(segLengths,[],1);
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    endTimeLowerBound = (maxSegLengths/maxVelocity);

    % Choose acceleration by multiplying endTime to be greater than lower bound
    greaterThanFactor = 1.1;
    endTimes = repmat(greaterThanFactor*endTimeLowerBound,size(wpts,1),1);

    % Determine min and max peak velocity for each segment and dimension
    % Choose largest velocity that doesn't exceed maximum velocity
    minPeakVels = segLengths./endTimes;
    maxPeakVels = 2*segLengths./endTimes;

    peakVels = min(maxPeakVels,maxVelocity);
    peakVels = max(minPeakVels,peakVels);

    % Replace any zero-values with peak velocity
    peakVels(peakVels==0) = maxVelocity;
end

Use the helper function to create a trajectory for the waypoints that has a maximum velocity bound of
0.5 rad/s.

[endTimes,peakVels] = helperProfileForMaxVel(wpts,0.5);
[q,qd,qdd,t,pp] = trapveltraj(wpts,100,EndTime=endTimes,PeakVelocity=peakVels);
tpts = [0 cumsum(endTimes(1,:))];
helperPlotTaskSpaceTraj("Helper Function with Maximum Velocity 0.5 rad/s",t,q,qd,wpts,tpts);
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Generate Code for Motion Planning Using Robot Model
Imported from URDF

This example shows how to perform code generation to plan motion using robot model imported from
URDF file. For this example, you use a manipulatorRRT object with a imported rigidBodyTree
robot model to find a obstacle-free path between two configurations of the robot. After you verify the
algorithm in MATLAB®, use the generated MEX file in the algorithm to visualize the robot movement.

Write Algorithm to Plan Path

Create a function, iiwaPathPlanner, that uses a manipulatorRRT object to plan a path between
two configurations for the KUKA LBR iiwa 14 robot model in an obstacle filled environment.

function path = iiwaPathPlanner(startConfig, goalConfig, collisionDims, collisionPoses)
    %#codegen
    robot = iiwaForCodegen('row');
    collisionObjects = cell(1,length(collisionDims));
    for i=1:length(collisionDims)
        switch length(collisionDims{i})
            case 1
                sphereRadius = collisionDims{i};
                collisionObjects{i} = collisionSphere(sphereRadius{1});
                collisionObjects{i}.Pose = collisionPoses{i};
            case 2
                cylinderDims = collisionDims{i};
                collisionObjects{i} = collisionCylinder(cylinderDims{1}, cylinderDims{2});
                collisionObjects{i}.Pose = collisionPoses{i};
            case 3
                boxDims = collisionDims{i};
                collisionObjects{i} = collisionBox(boxDims{1}, boxDims{2}, boxDims{3});
                collisionObjects{i}.Pose = collisionPoses{i};
        end
    end

    planner = manipulatorRRT(robot, collisionObjects);
    path = plan(planner, startConfig, goalConfig);
end

The algorithm acts as a wrapper for a standard RRT motion planning call. It accepts standard inputs,
and returns a set of robot configuration vectors as the path. Since you cannot use handle objects as
the input or output for functions that are supported for code generation. Load the robot inside the
function. Save the iiwaPathPlanner function in your current folder.

Verify Motion Planning Algorithm in MATLAB

Verify the motion planning algorithm in MATLAB before generating code.

Import a KUKA LBR iiwa 14 robot model as a rigidBodyTree object. Set the data format to "row".

robot = importrobot('iiwa14.urdf');
robot.DataFormat = 'row';

Create rigidBodyTree code generating function for the robot model.

writeAsFunction(robot,'iiwaForCodegen');

Create a simple environment with obstacles using collision primitives.
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env = {collisionBox(0.5, 0.5, 0.05),collisionSphere(0.15)};
env{1}.Pose = trvec2tform([0.35 0.35 0.3]);
env{2}.Pose = trvec2tform([-0.25 0.1 0.6]);

Define a start and goal configuration. You must specify a start and goal that do not overlap with the
obstacles. Otherwise, the planner throws an error.

startConfig = robot.homeConfiguration;
goalConfig = [-2.9236 1.8125 0.6484 1.6414 -0.4698 -0.4181 0.3295];

Visualize initial and final positions of the robot.

figure; 
show(robot,startConfig); 
hold all; 
show(robot,goalConfig);
show(env{1});
show(env{2});

Extract the collision data from the environment.

collisionDims = {{env{1}.X env{1}.Y env{1}.Z},{env{2}.Radius}};
collisionPoses = cellfun(@(x)(x.Pose),env,'UniformOutput',false);

Plan the path.

path = iiwaPathPlanner(startConfig,goalConfig,collisionDims,collisionPoses);
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Visualize the robot. Set the 'FastUpdate' option of the show method to true to get a smooth
animation.

figure;
ax = show(robot,startConfig);
hold all
show(env{1},'Parent',ax);
show(env{2},'Parent',ax);
rrt = manipulatorRRT(robot,env);
interpPath = interpolate(rrt,path);
for i = 1:size(interpPath,1)
    show(robot,interpPath(i,:),'PreservePlot',false,'FastUpdate',true);
    drawnow;
end

Generate Code for Motion Planning Algorithm

You can use either the codegen (MATLAB Coder) function or the MATLAB Coder (MATLAB Coder)
app to generate code. For this example, generate a MEX file by calling codegen at the MATLAB
command line. Specify sample input arguments for each input to the function using the -args input
argument.

Call the codegen function and specify the input arguments in a cell array. This function creates a
separate iiwaPathPlanner_mex function to use. You can also produce C code by using the options
input argument. This step can take some time.

codegen iiwaPathPlanner -args {startConfig,goalConfig,collisionDims,collisionPoses}
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Code generation successful.

Verify Results Using Generated MEX Function

Plan the path by calling the MEX version of the motion planning algorithm for the specified start and
goal configurations, and collision data from the environment.

path = iiwaPathPlanner_mex(startConfig,goalConfig,collisionDims,collisionPoses);

Visualize the robot with the robot configurations computed using the MEX version of the motion
planning algorithm. Set the 'FastUpdate' option of the show method to true to get a smooth
animation.

figure;
ax = show(robot, startConfig);
hold all
show(env{1},'Parent',ax);
show(env{2},'Parent',ax);

interpPath = interpolate(rrt,path);
for i = 1:size(interpPath,1)
    show(robot,interpPath(i,:),'PreservePlot',false,'FastUpdate',true);
    drawnow;
end
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Solve Inverse Kinematics for Closed Loop Linkages
Closed loop linkages are widely used in automobiles, construction and manufacturing machines, and
in robot manipulation. Although you cannot directly model closed-loop linkages with the
rigidBodyTreeImportInfo object in Robotics System Toolbox™, you can still study the kinematics
of closed-loop systems by combining a rigid body tree with constraints that mimic loop-closing joints.
The constraintRevoluteJoint, constraintPrismaticJoint, and constraintFixedJoint
constraint objects enable you to model loop-closing revolute, prismatic, and fixed joints, respectively.
To kinematically model closed-loop linkages, use the constraints with a
generalizedInverseKinematics solver to constrain the solutions to act as desired.

This example shows how to model a four-bar linkage, a widely used closed-loop linkage, using the
rigidBodyTree and constraintRevoluteJoint objects, and the
generalizedInverseKinematics System object™.

Four-Bar Linkage as Rigid Body Tree with Revolute Joint Constraint

This figure shows a four-bar linkage. The highlighted joint j4 is a loop-closing revolute joint.

You can create a rigid body tree corresponding to the four-bar linkage, which consists of joints j1, j2,
and j3, and is constrained with a revolute joint constraint that acts as a fourth joint, j4. This figure
shows the reference frames of the links of the rigid body tree in an unconstrained joint configuration.
The frames of the links are located at their respective joints. The frame corresponding to the base
body of the rigid body tree, link0, is shown is represented by the black arrows.
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Visualize the rigid body tree in an unconstrained configuration.

fourBarLinkageTree =  exampleHelperFourBarLinkageTree();
figure(Name="Rigid Body Tree Unconstrained As Four-Bar Linkage",Visible="on")
unconstrainedConfig = [pi/4 -pi/4 -110*pi/180];
ax = show(fourBarLinkageTree, ...
    unconstrainedConfig, ...
    Collisions="on", ...
    Frames="on", ...
    PreservePlot=true, ...
    FastUpdate=false);
title("Rigid Body Tree Unconstrained as Four-Bar Linkage")
view([0 0 pi/2])
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Connectivity Graph of Four-Bar Linkage

One way to approach the modeling of closed-loop linkages is by using connectivity graphs. This
approach models the kinematic linkage using a graph whose vertices are the links of the linkage, and
an edge between links represents the joint between them.

Using this representation, the goal of modeling the closed-loop linkage as a rigid body tree with joint
constraints as removing edges from the graph so that the graph becomes a tree. A tree is a graph
with no loops, which instead uses constraints to enforce the removed edges.

In the connectivity graph, the difference between the four-bar linkage and its equivalent rigid body
tree representation is that the rigid body tree needs a loop-closing joint constraint from link0 to link3.
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Set Up Inverse Kinematics Solver

The four-bar linkage is a one degree-of-freedom linkage, and is driven by the crank link, link1. Given
a crank position specified by the value of joint j1, the generalized inverse kinematics solver outputs
the joint positions corresponding to joints j2 and j3.

Create an instance of the generalized inverse kinematics solver. For this task, the solver requires two
constraint objects, constraintDistanceBounds and constraintRevoluteJoint.

solverFourBarLinkage = generalizedInverseKinematics(...
    RigidBodyTree=fourBarLinkageTree, ...
    ConstraintInputs={'jointbounds','revolutejoint'});

% Disable random restarts for repeatable IK solutions
solverFourBarLinkage.SolverParameters.AllowRandomRestart = false;
solverFourBarLinkage.SolverParameters.StepTolerance = 1e-14;

Define the revolute joint constraint between link3 and link0.

% Revolute joint constraint between "link3" and "link0"
cRevolute = constraintRevoluteJoint("link3","link0");

Toensure that the crank position is fixed with respect to the solution, you must implement a joint
bounds constraint. The elements of the Weights property of the joint bounds constraint corresponds
to a joint position in the joint configuration of the rigid body tree. In this case, only joint j1 has a non-
zero weight, as it is the joint that we want to constrain.

% Joint bounds constraint to fix the crank position.
activeJointConstraint = constraintJointBounds(fourBarLinkageTree);
activeJointConstraint.Weights = [1 0 0];
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Intermediate Frames of Constraints

Revolute joint constraints constrain two intermediate frames. Each frame corresponds to the
predecessor and the successor body. This figure below shows which intermediate frames to constrain
to mimic the loop-closing joint.

In the unconstrained configuration, the predecessor intermediate frame is located at along the x-axis
of the base (link0) frame at [1 0 0], shown as the black arrows. Similarly, the successor
intermediate frame is located along the x-axis of the link3 frame at [1 0 0].

cRevolute.PredecessorTransform = trvec2tform([1 0 0]);
cRevolute.SuccessorTransform = trvec2tform([1 0 0]);
vis = exampleHelperFrameVisual(fourBarLinkageTree,cRevolute,ax);
vis.update(unconstrainedConfig);
view([0 0 pi/2])

 Solve Inverse Kinematics for Closed Loop Linkages

1-371



If you constrain the intermediate frames, they co-locate. This figure shows a constrained
configuration that corresponds to the unconstrained configuration.
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Visualize Constrained Motion

The joint position, theta, of the crank drives the linkage. For a discrete set of crank positions in the
interval π

2 , 2π + π
2 , the solver solves for joint positions in the rigid body tree such that it behaves like

a four-bar linkage. This code visualizes the constrained rigid body tree for every crank position,
theta.

For the initial crank position, π
2 , guess an initial constrained configuration for the solver. The

visualization loop overwrites this value.

constrainedConfig = [pi/2 0 pi/3];

Initialize the figure for visualization.

figure(Name="Rigid Body Tree Constrained As Four-Bar Linkage",Visible="on")
ax = show(fourBarLinkageTree,constrainedConfig, ...
    PreservePlot=false, ...
    FastUpdate=true, ...
    Collisions="on");
title("Rigid Body Tree Constrained as Four-Bar Linkage")
vis = exampleHelperFrameVisual(fourBarLinkageTree,cRevolute,ax);

Visualize the four-bar linkage for a specified crank position.

for theta = linspace(pi/2,5*pi/2,101)
    % Fix the crank position to "theta" in the solver-generated constrained
    % config. This is done by setting identical upper and lower values for
    % the joint bounds constraint.
    config = [theta constrainedConfig(2) constrainedConfig(3)];
    activeJointConstraint.Bounds(1,:) = [theta theta];
    constrainedConfig = solverFourBarLinkage(config,activeJointConstraint,cRevolute);
    
    % Visualize the constrained rigid body tree and the
    % predecessor and successor intermediate frames of the constraint.
    show(fourBarLinkageTree,constrainedConfig, ...
        PreservePlot=false, ...
        FastUpdate=true, ...
        Collisions="on");
    vis.update(constrainedConfig);
    view([0 0 pi/2]);
    drawnow;
end
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Plan Manipulator Path for Dispensing Task Using Inverse
Kinematics Designer

This example shows how to design a robotic manipulator path for a dispensing task. A successful path
consists of a sequence of collision-free waypoints that are designed and verified in the Inverse
Kinematics Designer app. Create waypoints for an adhesive dispensing task, in which the robot
picks up two adhesive strips, applies glue, and then applies the strips to a box.

Create Robot and Environment Elements for the Scene

This example has three main steps:

1 The robot picks up adhesive strips from a loading station using a custom tool.
2 The robot places the tool under a dispensing stand, where glue is applied to both strips.
3 The robot attaches the two strips to the object in the desired location.

The example uses a Universal Robots UR5e manipulator, equipped with a custom end effector. The
result of this application is a series of waypoints that can be connected via a planner, trajectory
tooling, or both. The path planner takes the waypoints to generate a single collision-free path that
reaches all the waypoints.

Create UR5e with Custom End Effector

This example will make use of the UR5 e-series, which is available in the robot library.

ur5e_robot = loadrobot("universalUR5e");

Create the custom gripper with the customEEBuilder helper function and then attach the custom
gripper to the robot. Show the robot to verify that the gripper is on the robot.

customEE = customEEBuilder.build(true);
addSubtree(ur5e_robot,'tool0',customEE);
show(ur5e_robot);
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Create Environment Representation

The complete scene has several collision objects to represent scene objects. Create the primitive
collision objects using the constructToolStation helper function.

Add the feeder station at the position [0 0.4 0].

stationPose = trvec2tform([0 0.4 0]);
[toolStationBase,partFeeder] = constructToolStation(stationPose);

Next add the dispensing station, modeled by a small cylinder next to the feeder at [.25 .45 .65].

dispensingStation = collisionCylinder(.01,.1);
dispensingStation.Pose = trvec2tform([.25 .45 .65]);

Create a platform underneath the robot located at [0 0 -.011].

platform = collisionBox(1,1,0.02);
platform.Pose = trvec2tform([0 0 -.011]);

Add the box that the robot places adhesive strips on in front of the robot at [0.3 -.3 .05].

box = collisionBox(0.2,0.3,0.1);
box.Pose = trvec2tform([0.3 -.3 .05]);
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Use Inverse Kinematics Designer to Create Waypoints

Use Inverse Kinematics Designer to find the waypoint configurations that satisfy specific goals.
Once the waypoints are created, these configurations are exported from the app to the base
workspace.

To skip to the final state, load the included save session dispensingSessionData and that
associated exported configurations by executing:

inverseKinematicsDesigner("dispensingSessionData.mat")
load pathWaypointData.mat

Otherwise, follow along with the example.

Start New Session

Now that the scene elements have been defined, start a new app session and populate it with the
robot and environment pieces.

To start the app, open it from the Apps ribbon, or call it using the following command:

inverseKinematicsDesigner

Next, start a new session. On the toolstrip, click New Session to bring up the New Session dialog
box. Make sure the dropdown is set to Load robot from workspace and select ur5e_robot, the
robot that was defined in the previous section. Click OK to import it and start the session.
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Add Environment to Scene

To load the environment model, click Scene > Add Collision Object in the Inverse Kinematics
tab. This will bring up the Add Collision Object dialog, which shows all the available collision
objects in the MATLAB® workspace. Shift-click to select the box, dispensing station, tool station
base, part feeder. and platform.
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Click Add to add these objects to the scene. Then use the Axes Toolbar on the figure in the Scene
Canvas to reposition to scene so it fits. See “Use Scene Canvas and Move Robot” for more
information.

The Inverse Kinematics Designer session is now set up, containing the scene elements and robot,
which can be interactively guided by the marker.
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Add Waypoints for each Task

Find the configurations that correspond to the waypoints for each task. Constraints will be used along
the way to ensure that each configuration satsifies the target pose.

Pick up the Adhesive Strips from the Part Feeders

The two flat panels simulation adhesive grip attachments on the gripper must align with the pads at
the feeding station. To see these parts, it is helpful to temporarily disable the marker visuals. Right-
click on the Marker Pose Constraint in the Constraints Browser and select Toggle marker
display to disable the marker visuals.
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Now click on partFeeder in the Scene Browser. To ensure the parts are properly picked, the goal
will be to place the modeled attached strip on the gripper so that it aligns with the part feeder. Read
the pose of the object from the scene inspector. The object is located at [-.05 .4 .525] and
rotated 45 degrees about the world X axis.
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Move marker pose target to this pose so that a configuration is found in which the robot is aligned in
the picking task pose. While it could be possible to achieve this via hand tuning, the most direct way
is to directly set the end effector pose. Click on Marker Pose Constraint in the toolstrip, or
alternatively select the Marker Pose Constraint in the Constraints Browser and selecting Edit
Constraint. Once the constraint appears in the toolstrip, enter the pose of the object,
[-.05 .4 .525] and rotated 45 degrees about the world X. As each value is added, the pose axis
visual preview in the scene updates to indicate the new target pose.

Click Apply in the Constraint tab to set this value as the target. This updates the pose, but the robot
is backwards from the intended direction. Add a rotation of 180 degrees about the Y axis to flip the
target pose.
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The necessary orientation of the end effector can be determined ahead of time by examining the
gripper.

show(customEE);
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Select the adhesive strip to highlight the orientation of its origin and reference frame.
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As indicated by the red, green, and blue tip highlighting on the violet reference joint marker, the Z
axis is orthogonal to the part, while the Y axis points away from the L bracket that attaches to the
gripper.

Therefore, the following rules must be satisfied regarding part orientation:

• When when picking up the part, the Z axis must point at the feeder, and the Y axis should be in-
line with the global Y axis.

• When applying glue, the Z axis must point at the dispenser.
• When applying a part, the Z axis should be pointed at the part, with the Y axis pointed down, so

that the L bracket is above the part.
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Adjust Configuration to Avoid Collisions

Determine which bodies are in collision by selecting Check Collisions in the toolstrip. The red
highlighting in the scene and the icons on the left show the objects in collision. Selecting an object
shows the objects it is colliding with in the scene inspector.

From this view, see that the upper arm and gripper base links are in collision with the tool station
base, and the adhesive strip is in collision with the part feeder.
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From this view, it can be seen that the upper arm and gripper base links are in collision with the tool
station base, and the adhesive strip is in collision with the part feeder. The latter is expected as the
original marker pose target coinsides with the same position as the part feeder. However, assuming
the part will lay flat on the feeder, the end effector can be retracted such that the end effector has
enough clearance to pick up the part.

To make this change, click on the lateral Z axis grip of the marker, and drag the marker along its local
Z axis.
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Click Check Collision again to verify that the adhesive and gripper bodies are no longer in collision.

The second collision is between the tool station base and two links in the robot. To avoid these in-
collision configurations, use constraints such as the Cartesian bounds constraint to adjust the solver
so that it no longer finds configurations in which the forearm and upper arm can collide with the
base.

A bounds constraint can be used to keep bodies inside a particular bounded range. In this case, the
aim would be to keep the distal end of the upper arm from contacting the base. Since that end of the
link is near coincident with the original (and reference point) of the forearm link, a Cartesian Bounds
constraint that prevents the forearm from reaching the base along Y should prevent this collision. To
add this, click Add Constraint > Cartesian Bounds Constraint.

Create a target bounded region for the manipulator that avoids the tooling station base. Set the
default upper Y bound to 0.3 meters and the default upper Z bound to 0.7 meters creates a region
for this body to be in that avoids the base. Additionally, set the weight on the X direction to 0 since
the range in that direction is unlimited. Observe the the preview in the image below.
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Click Apply to apply the constraint, then close the constraints browser. The robot is now repositioned
and collision-check confirms that while the arm links are no longer in collision with the base, the
wrist is still in collision. Create another Cartesian bounds constraint with a Y range of -0.5 meters to
0.2 meters to prevent this collision. Set the weights on the other bounds to 0, so that only Y is
considered.
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Apply the changes and exit the Constraints tab. Then click Check Collisions again verify that the
configuration is collision-free.
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In the case above, while the solution is now collision-free and visually close to the target, the marker
pose target constraint is not met. Click Refresh Solver to attempt to see if the solver can find
another solution. Try this a few times. If the solver cannot find a solution where the marker pose
target constraint is not met, modify the solver parameters so it can find a solution that satisfies all
constraints during its execution time.

The default solver parameters are set to be fairly fast with just 50 iterations, which can struggle with
a higher number of constraints. In the toolstrip, click Solver Settings or select the Solver tab. Then
set the value of the number of Maximum Iterations to 500. Click Apply to run the solver and return
to the Inverse Kinematics tab.
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The robot should now be in a configuration that is collision-free and meets all constraints.

Once satisfied with the configuration, store it by clicking Store Configuration in the
Configurations Panel. Rename the configuration to Pick up part.

The method used above to find a solution, i.e. adding constraints and extending solver run-time, is
one way to ensure a result can be reached. Another method is to give the solver different starting
configurations. Since each call to inverse kinematics uses the current configuration as the initial
guess, you can "help" the solver by putting the robot in a pose that appears near satisfaction. This
may be done by setting selecting links and modifying their joint values directly in the scene inspector,
or by using the marker pose target to move the robot around. You can also continue to click Refresh
Solver or modify the parameters further to search for different configurations if unsatisfied with the
current one.

Apply Glue to Part at Dispensing Station

The next pose is below the dispensing station. For this constraint to be reachable, the second
cartesian constraint must be removed. De-select the constraint by clicking the checkbox next to
Constraint2 [Cartesian]. Alternatively, right-click on it and delete it since it is no longer
needed.
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Next, click on the dispensing station to determine its global pose and dimensions, then modify the
marker target pose so it lies at the base of the dispensing station. Since the dispensing station is
located at [0.25 0.45 0.65] meters and has length 0.1 meters, set the target pose to 0.05
meters below the origin of the dispensing station at [0.25 0.45 0.6] meters. With the orientation
set to [0 0 0] degrees so the Z axis of the adhesive strip is pointing at the dispensing station.
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Apply the changes and exit the Constraints tab. Then drag the Z axis of the marker to provide some
clearance between the part and the dispensing station. Check collisions and verify that the pose is
collision-free.

1 Robotics System Toolbox Examples

1-394



Lastly, store the configuration and rename it to Dispense glue.

Apply Strips to Product

For the final configuration, the part will be applied to the box. As with the previous two
configurations, the pose will be based off of the part location.
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Start by determining the target pose. Click on the box, and choose a target that will orient the
gripper orthogonally to the box with the L bracket above the box. Based on the position of the box,
[0.3 -0.3 -.05], the gripper should be placed in the center of the box pointing outward, but with
clearance for the 0.15 meter long strip to be placed without colliding with the platform. An example
of such a position is [0.2 -0.3 0] meters. Using the orientation rules described, the Z axis of the
gripper must point towards the box, along the global X axis, and the Y axis of the gripper must point
down, towards the platform.

Apply the constraint, then exit the tab. Check collisions and observe that the robot has reached the
configuration, but is still in collision with the box. Again, this is expected due to the positions
coinciding. Provide a bit of clearance by dragging the Z axis of the marker to move the gripper. You
can see the pose of the selected link in the Scene Inspector whenever the marker is released.
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After verifying that the last configuration is collision-free, save it to the Configurations Browser.
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Verify Configurations Work as Waypoints

Check that there are no collisions in any of the configurations and iterate through the waypoints.

Export Waypoints and Plan Path

Now that all waypoint configurations have been designed, click Export Path to export the waypoints
to the workspace. Specify the name of the waypoint matrix, shift-click to select all waypoints, and
click Export.
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The set of ordered waypoints now exist as a matrix of configurations in the workspace.

Plan Path Between Waypoints

Since the path between these waypoints is direct and clear of obstacles, a trapezoidal velocity profile
trajectory could be used to connect these waypoints with smooth trajectories that stop at each
waypoint.

However, because the robot is very close to the collision objects, it is more prudent to use a path
planner. Use the manipulatorRRT function to plan a path between the three waypoints created in
Inverse Kinematics Designer.

load pathWaypointData.mat
env = {dispensingStation partFeeder toolStationBase platform box};
planner = manipulatorRRT(ur5e_robot,env);
planner.MaxConnectionDistance = 0.45;
planner.ValidationDistance = 0.1;

rng(10);
numPts = 25;
numWaypoints = size(pathWaypoints,1);
paths = cell(1,numWaypoints);
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for segIdx = 1:numWaypoints
    tic;
    plannedPath = plan(planner, pathWaypoints(segIdx,:), pathWaypoints(mod(segIdx,numWaypoints)+1,:));
    shortenedPath = shorten(planner, plannedPath, 10);
    paths{segIdx} = interpolate(planner, shortenedPath, 10);

    segTime = toc;
    disp(['Done planning for segment ',num2str(segIdx),' in ',num2str(segTime), ' seconds']) %i in %f seconds\n])
end

Done planning for segment 1 in 29.4579 seconds
Done planning for segment 2 in 76.0054 seconds
Done planning for segment 3 in 19.5043 seconds

A complete path can be made by combining the segments.

totalSegs = vertcat(paths{:});

Visualize Completed Trajectory

Now that the waypoints have been planned, play back the path to make sure it works.

ax = show(ur5e_robot);
hold all
for i = 1:numel(env)
    env{i}.show("Parent", ax);
end

% Display the figure window the animation
pathFig = ancestor(ax, 'figure');
set(pathFig, "Visible", "on")

% Set up timing and configure robot
r = rateControl(10);
tvec = linspace(1,numWaypoints,numWaypoints*numPts);
ur5e_robot.DataFormat = "row";

% Animate all path segments
for pathSegIdx = 1:numel(paths)
    path = paths{pathSegIdx};

    % For each path segment, step through all the configurations
    for configIdx = 1:size(path,1)
        show(ur5e_robot, path(configIdx,:), "FastUpdate",true, "PreservePlot",false,"Parent",ax);
        waitfor(r);
    end

    % Hold the pose and update the title each time a waypoint is reached
    title(sprintf('Segment %i completed', pathSegIdx), "Parent",ax);
    pause(1);
end
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Next Steps

Once satisfied with the path, this workflow can be completed by smoothing the paths using
trajectories and incorporating the them into a higher-level workflow. For example, these paths may be
deployed to a robot using hardware tools, integrating with hardware tools to actuate the gripper. See
“Get Started” (Robotics System Toolbox Support Package for Manipulators) for more information.
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Create Constrained Inverse Kinematics Solver Using Inverse
Kinematics Designer

This example shows how to create an inverse kinematics (IK) solver and constraints using the
Inverse Kinematics Designer app. Inverse kinematics (IK) solvers are used in robotics to determine
the joint configurations for a robot that satisfies certain constraints. A constrained IK solver can be
used to enforce a variety of behaviors, such as end effector pose targets, joint position limits, and
other kinematic constraints. In this example, a solver & constraints are designed to enforce a camera
aiming behavior for the Willow Garage PR2. The PR2 includes a body that represents a camera
sensor. By adding a constraint that forces the camera to point at the left gripper, the camera follows
the gripper as it moves, ensuring that the camera will track any object that the gripper is acting on.

Start New Session

Click Apps > Inverse Kinematics Designer to start the app, or use the
inverseKinematicsDesigner function:

inverseKinematicsDesigner

Click New Session to bring up the New Session dialog box to start a new app session. The dialog
allows you to choose from a list of robots available in the robot library or provide custom rigid body
trees. Custom rigid body trees must be available in the MATLAB workspace before loading them into
the app.

Select Willow Garage PR2 from the Rigid body tree list, and click OK.
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Position Robot in Scene Canvas

Once the app is loaded, use the controls in the Scene Canvas to reposition the robot to more
comfortably use the space. Hover over the axes shown in the Scene Canvas to bring up the Axes
Toolbar, shown with numbered components in the figure below.

Use these buttons to control the figure mode. The Rotate 3D control (labeled with a 1 in the figure
above) to rotate the robot. In this mode, a scroll wheel or similar function will zoom the entire Scene
Canvas, and can be useful to fill the screen. The Pan button (labeled with a 2), allows the user to pan
the robot within the axes bounds, and has the same default zoom behavior as the Rotate 3D option.
The Zoom In and Zoom Out modes (labled with a 3 above) enable the user to zoom in within the
axes bounds by clicking or using the scroll wheel zoom. Lastly, the Home control resets the view to
the default one.

In the following GIF, all four modes are used to reposition the robot into a more usable position given
screen space.
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Zoom Mode

It is necessary to enter one of the given figure control modes to zoom in using the scroll wheel or a
similar feature. As noted above, there are two such modes. When the Rotate 3D or Pan controls are
active, the entire canvas is zoomed (i.e. the axes limits don't change). When the Zoom In or Zoom
Out controls are active, the canvas is zoomed inside the figure bounds. By using these together, it's
possible to use the canvas space as efficiently as possible for a task.

Choose Body for Robot Gripper

Choose the body to use as the robot gripper. There are many possible bodies in the gripper, so it is
useful to click on them and select one that moves intuitively. There are several ways to inspect the
robot.

Explore Robot Using Scene Panes

The Scene Browser is the panel to the left of the scene canvas. It displays all the bodies and joints in
the robot, as well as any collision objects that have been loaded into the scene. By clicking on objects
in the scene inspector, they will be highlighted in the Scene Canvas, and the details of the selected
object are brought up in the Scene Inspector. The Scene Inspector is the rightmost panel, and
shows object properties and states, such as the current pose.

To get started, select the body, l_gripper_palm_link, in the Scene Browser to select the palm of
the left gripper.
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To further verify its motion, right-click on the body and select Assign Pose To Marker Body. This
assigns the marker to this body so that it may be moved around using an interactive marker pose
target.

Move End Effector Using Marker Pose Constraint

The Inverse Kinematics Designer always creates a solver with one default constraint: the marker pose
constraint. This constraint assigns the target pose for a specified end effector body. The body can be
set via the right-click menus or in the toolstrip, or by editing the constraint and modifying the
constraint details directly. Unlike other constraints, however, the marker pose constraint can be
directly set using an interactive marker.
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This tool allows the robot to be easily manipulated, which helps with solver verification. The
constraint can also be disabled by unchecking the check box next to it in the Constraints Browser.

Point Camera at Gripper Body Using Aiming Constraint

Now that the app has been configured, add an aiming constraint to ensure that the camera is always
pointing at the left gripper. An aiming constraint ensures that the Z axis of a designated body points
at a given point in space, specified in reference to some other body. To add a constraint, click Add
Constraint in the toolstrip to open the Constraint tab, and then select Aiming Constraint. This
opens the aiming constraint parameters section of the Constraint tab.
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Assign Constraint Parameters

To configure the aiming constraint, three main parameters must be set:

• Assign an End Effector body. The end effector is the body that aims at the reference point along
its Z axis. Since the goal is to have the camera aim, it is necessary to choose a body on the head
(the green body) with a forward-facing Z axis is chosen. Select high_def_optical_frame from
the End Effector Body list, and observe that the corresponding body is now highlighted in green.

• Assign a Reference Body. The target point is defined with respect to a reference body. Since we
have been using the palm to move the robot arm, select l_gripper_palm_link from the
Reference Body list. Observe that the palm body is now highlighted in blue.

• Modify the Target Point. By default, the target point is at the origin of the reference body.
However, suppose we want to instead aim at a point that is slightly offset from the palm, as though
it were holding something. Set the Z Target to 0.1 and observe that the red X that indicates the
target point is now offset along the reference body's Z-axis.

During constraint modification, the marker can be hidden to make the constraint changes easier to
inspect. Disable the marker either by unchecking Marker Pose Target in the Constraints Browser,
or by right-clicking on the marker pose constraint in the Constraints Browser and selecting Toggle
Marker Display.
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Once you are satisfied with the constraint, click Apply to add the constraint to the solver, and Close
Constraint to exit the constraint tab.

Verify Constrained Behavior

Once the constraint has been applied, verify that it works as expected by moving the palm around
and seeing if the camera follows it. To do this, first make sure that both constraints are enabled in the
Constraints Browser (they should be checked). Next, use the marker to move the palm around, and
see if the head follows.
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As you move the marker, notice that the robot may not always hit the marker exactly. You can see
whether a constraint has been met by looking at the Constraints Browser. When the constraint icon
with a green check is shown, the constraint has been fully satisfied. However, when a constraint icon
with a red X is shown, the constraint has not been met. For example, in the following snapshot, the
Marker Pose Target is not met, while the aiming constraint has been met.

 Create Constrained Inverse Kinematics Solver Using Inverse Kinematics Designer

1-409



There are many reasons why a constraint might not be met, ranging from conflicts with other
constraints to not enough solver iterations. Click the Report Status button to see why the solver
exited. This opens a window that indicates details of the last solver call.

For example, in the situation above, clicking on the report indicates that the solver ran to the
maximum number of iterations and then returned the best available solution.
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Therefore, it is recommended to call the solver again using the current conditions as the initial
conditions. If that does not succeed, it is also possible that the pose is unachievable. For more
information, refer to “Resolving Constraint Conflict”.

Tune Solver Settings

Based on the exit conditions, it may be helpful to modify the solver settings. For example, as more
constraints are added, the maximum iterations should be increased to ensure that the solver has time
to converge.

To update the settings, click Solver Settings, or select the Solver tab.

Select the Maximum Iterations, and change the value to 200. Click outside the box to confirm the
change, then click Apply to Solver to apply changes.
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Once the new solver settings have been applied, return to the Inverse Kinematics tab and click
Refresh Solver to run the solver again. Click Report Status to verify that when a solution is
achievable, the solution converges before the maximum iterations are hit.

Export Solver and Constraints

To use the solver object outside of the app, export it to the MATLAB® workspace. Click Export
Solver and Constraints, which will bring up the Export Solver and Constraints dialog.

Set Solver name and Constraints cell array name or use the default values. Shift-click to select
multiple constraints and click Export.
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Once everything is selected, click Export to export these to the workspace.

Use Exported Solver

Use the exported solver object to constrain another configuration directly from the command line.

Note that the exported solver uses a robot with row format so the exported configurations are in row
format. A handle to the rigid body tree is stored on the exported solver object.

load("ikSolverDesignExampleData.mat")

robot = ikSolver.RigidBodyTree;

% Assign a new target pose to the gripper
ikConstraints{1}.TargetTransform = trvec2tform([-.01 .04 1.45]);

% Call the solver with these two constraints
[qSol, info] = ikSolver(robot.homeConfiguration, ikConstraints{:});

% Display results
show(robot, qSol);
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Perform Path Planning Simulation with Mobile Robot
Create a scenario to simulate a mobile robot navigating a room. The example demonstrates how to
create a scenario, model a robot platform from a rigid body tree object, obtain a binary occupancy
grid map from the scenario, and plan a path for the mobile robot to follow using the
mobileRobotPRM path planning algorithm.

Create Scenario with Ground Plane and Static Meshes

A robotScenario object consists of a set of static obstacles and movable objects called platforms.
Use robotPlatform object to model the mobile robot within the scenario. This example builds a
scenario consisting of a ground plane and box meshes to create a room.

scenario = robotScenario(UpdateRate=5);

Add a plane mesh as ground plane in the scenario.

floorColor = [0.5882 0.2941 0];
addMesh(scenario,"Plane",Position=[5 5 0],Size=[10 10],Color=floorColor);

The walls of the room are modeled as box meshes. The static meshes are added with the
IsBinaryOccupied value set to true, so these obstacles are incorporated into the binary
occupancy map used for path planning.

wallHeight = 1;
wallWidth = 0.25;
wallLength = 10;
wallColor = [1 1 0.8157];

% Add outer walls.
addMesh(scenario,"Box",Position=[wallWidth/2, wallLength/2, wallHeight/2],...
    Size=[wallWidth, wallLength, wallHeight],Color=wallColor,IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[wallLength-wallWidth/2, wallLength/2, wallHeight/2],...
    Size=[wallWidth, wallLength, wallHeight],Color=wallColor,IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[wallLength/2, wallLength-wallWidth/2, wallHeight/2],...
    Size=[wallLength, wallWidth, wallHeight],Color=wallColor,IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[wallLength/2, wallWidth/2, wallHeight/2],...
    Size=[wallLength, wallWidth, wallHeight],Color=wallColor,IsBinaryOccupied=true);

% Add inner walls.
addMesh(scenario,"Box",Position=[wallLength/8, wallLength/3, wallHeight/2],...
    Size=[wallLength/4, wallWidth, wallHeight],Color=wallColor,IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[wallLength/4, wallLength/3, wallHeight/2],...
    Size=[wallWidth, wallLength/6,  wallHeight],Color=wallColor,IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[(wallLength-wallLength/4), wallLength/2, wallHeight/2],...
   Size=[wallLength/2, wallWidth, wallHeight],Color=wallColor,IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[wallLength/2, wallLength/2, wallHeight/2],...
    Size=[wallWidth, wallLength/3, wallHeight],Color=wallColor,IsBinaryOccupied=true);

Visualize the scenario.

show3D(scenario);
lightangle(-45,30);
view(60,50);
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Obtain Binary Occupancy Map from Scenario

Obtain an occupancy map as a binaryOccupancyMap object from the scenario for path planning.
Inflate the occupied spaces on the map by 0.3m.

map = binaryOccupancyMap(scenario,GridOriginInLocal=[-2 -2],...
                                           MapSize=[15 15],...
                                           MapHeightLimits=[0 3]);
inflate(map,0.3);

Visualize the 2-D occupancy map.

show(map)
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Path Planning

Use the mobileRobotPRM path planner to find an obstacle-free path between the start and goal
positions on the obtained map.

Specify the start and goal positions of the mobile robot.

startPosition = [1 1];
goalPosition = [8 8];

Set the rng seed for repeatability.

rng(100)

Create a mobileRobotPRM object with the binary occupancy map and specify the maximum number
of nodes. Specify the maximum distance between the two connected nodes.

numnodes = 2000;
planner = mobileRobotPRM(map,numnodes);
planner.ConnectionDistance = 1;

Find a path between the start and goal positions.

waypoints = findpath(planner,startPosition,goalPosition);

 Perform Path Planning Simulation with Mobile Robot

1-417



Trajectory Generation

Generate trajectory for the mobile robot to follow with the waypoints from the planned path using the
waypointTrajectory System object.

% Robot height from base.
robotheight = 0.12;
% Number of waypoints.
numWaypoints = size(waypoints,1);
% Robot arrival time at first waypoint.
firstInTime = 0;
% Robot arrival time at last waypoint.
lastInTime = firstInTime + (numWaypoints-1);
% Generate waypoint trajectory with waypoints from planned path.
traj = waypointTrajectory(SampleRate=10,...
                          TimeOfArrival=firstInTime:lastInTime, ...
                          Waypoints=[waypoints, robotheight*ones(numWaypoints,1)], ...
                          ReferenceFrame="ENU");

Add Robot Platform to Scenario

Load the Clearpath Husky mobile robot from the robot library as a rigidBodyTree object.

huskyRobot = loadrobot("clearpathHusky");

Create a robotPlatform object with the robot model specified as a rigidBodyTree object and its
trajectory specified as a waypointTrajectory System object.

platform = robotPlatform("husky",scenario, RigidBodyTree=huskyRobot,...
                         BaseTrajectory=traj);

Visualize the scenario with the robot.

[ax,plotFrames] = show3D(scenario);
lightangle(-45,30)
view(60,50)
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Simulate Mobile Robot

Visualize the planned path.

hold(ax,"on")
plot(ax,waypoints(:,1),waypoints(:,2),"-ms",...
               LineWidth=2,...
               MarkerSize=4,...
               MarkerEdgeColor="b",...
               MarkerFaceColor=[0.5 0.5 0.5]);
hold(ax,"off")

Set up the simulation. Since all the poses of the robot are known in advance, simply step through the
simulation and update the visualization at each step.

setup(scenario)

% Control simulation rate at 20 Hz.
r = rateControl(20);

% Status of robot in simulation.
robotStartMoving = false;

while advance(scenario)
    show3D(scenario,Parent=ax,FastUpdate=true);
    waitfor(r);

    currentPose = read(platform);
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    if ~any(isnan(currentPose))
        % implies that robot is in the scene and performing simulation.
        robotStartMoving = true;
    end
    if any(isnan(currentPose)) && robotStartMoving
        % break, once robot reaches goal position.
        break;
    end
end

To re-run the simulation and visualize the results again, reset the simulation in the scenario.

restart(scenario)
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Perform Obstacle Avoidance in Warehouse Scenario with
Mobile Robots

Create a scenario to simulate two mobile robots performing obstacle avoidance in a warehouse. This
example demonstrates how to create a warehouse scenario, add mobile robots using the rigid body
tree representation, model the kinematics of the robots, and simulate the behavior of the control
algorithms using the resultant scenario.

Create Warehouse Scenario

A robotScenario object consists of static meshes and robotPlatform objects. The
robotPlatform objects can be static or movable. The robotPlatform object supports robot model
specified as rigidBodyTree object, which enables SDF and URDF model support. In this example,
the warehouse scenario can be created with static box meshes or with SDF models.

scenario = robotScenario(UpdateRate=10);

Add a plane mesh as ground plane in the scenario.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create Warehouse Scenario Using Static Meshes

By default, scenarioOptions is set to Cuboid, here the warehouse scenario is constructed using
static cuboid meshes. The cuboid meshes provides low fidelity simulation environment, which helps in
testing algorithms with basic scenario elements.

% Select warehouse scenario options.

scenarioOptions = ;

In the warehouse scenario, the left and right side box meshes are considered as stationary shelves.
So these areas are treated as restricted region for the robots and considered in the occupancy map,
with IsBinaryOccupied parameter set to true.

if strcmp(scenarioOptions,"Cuboid")

    addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
    addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
    addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
    addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);

The robot loads and unloads objects from the loading and unloading positions. These objects are non-
stationary and represented with static cuboid meshes. So these meshes are not considered in the
occupancy map.

    addMesh(scenario,"Box",Position=[-3  0 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);
    addMesh(scenario,"Box",Position=[-5  1 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);
    addMesh(scenario,"Box",Position=[-5 -1 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);
    addMesh(scenario,"Box",Position=[13  0 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);
    addMesh(scenario,"Box",Position=[15  1 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);
    addMesh(scenario,"Box",Position=[15 -1 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

The warehouse scenario also contains an unattended non-stationary object which is represented with
static cuboid mesh. The robot treats this object as obstacle and avoids if found between planned
paths. This scenario element is not considered in the occupancy map.
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    addMesh(scenario,"Box",Position=[5 0 1.5],Size=[2 2 3],Color=[1 0 0]);
end

Create Warehouse Scenario Using SDF Models

To get more realistic warehouse scenario, download robomaker warehouse models and set
scenarioOptions to SDF. These SDF models are added as static robotPlatform objects to create
the warehouse scenario. The SDF models provides high fidelity simulation environment.

Load the shelves, cluttering, and bucket SDF models as rigidBodyTree object.

if strcmp(scenarioOptions,"SDF")

    shelfARBT = importrobot(fullfile(...
                    "roboMaker","models","aws_robomaker_warehouse_ShelfD_01","model.sdf"));
    shelfBRBT = importrobot(fullfile(...
                    "roboMaker","models","aws_robomaker_warehouse_ShelfE_01","model.sdf"));
    clutteringRBT = importrobot(fullfile(...
                    "roboMaker","models","aws_robomaker_warehouse_ClutteringA_01","model.sdf"));
    bucketWareRBT = importrobot(fullfile(...
                    "roboMaker","models","aws_robomaker_warehouse_Bucket_01","model.sdf"));

The SDF models which represents shelves on left and right side of the warehouse, are considered as
stationary. So these areas are treated as restricted region for the robots and considered in the
occupancy map, with IsBinaryOccupied parameter set to true.

    shelfAModel = robotPlatform("ShelfA",scenario,RigidBodyTree=shelfARBT,...
                        InitialBasePosition=[3  4 0],IsBinaryOccupied=true);
    shelfCModel = robotPlatform("ShelfC",scenario,RigidBodyTree=shelfARBT,...
                        InitialBasePosition=[3 -4 0],IsBinaryOccupied=true);
    shelfBModel = robotPlatform("ShelfB",scenario,RigidBodyTree=shelfBRBT,...
                        InitialBasePosition=[7  4 0],IsBinaryOccupied=true);
    shelfDModel = robotPlatform("ShelfD",scenario,RigidBodyTree=shelfBRBT,...
                        InitialBasePosition=[7 -4 0],IsBinaryOccupied=true);

The cluttering SDF models are considered as loading and unloading boxes, which are accessed by
robots. As these objects are non-stationary, these SDF models are not considered in the occupancy
map.

    loadingBoxModel = robotPlatform("LoadingBox",scenario,...
                        RigidBodyTree=clutteringRBT,...
                        InitialBasePosition=[-3 0 0],...
                        InitialBaseOrientation=eul2quat([pi/2 0 0],"ZYX"));
    unloadingBoxModel = robotPlatform("UnloadingBox",scenario,...
                        RigidBodyTree=clutteringRBT,...
                        InitialBasePosition=[13 0 0],...
                        InitialBaseOrientation=eul2quat([pi/2 0 0],"ZYX"));       

The bucket SDF model is considered as unattended non-stationary object by the robots. The robot
treats this object as obstacle and avoids if found between planned paths. This scenario element is not
considered in the occupancy map.

    unattendedBoxModel = robotPlatform("UnattendedBox",scenario, ...
                        RigidBodyTree=bucketWareRBT,...
                        InitialBasePosition=[5 0 0]);
end

Visualize the scenario.
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show3D(scenario);
view(-65,45)
light

Add Mobile Robots to Scenario

This example models two mobile robots that are running obstacle avoidance algorithms. The robots
will be moving between two specified positions in the warehouse.

loadingPosition = [0 0];
unloadingPosition = [10 0];

Load two AMR Pioneer 3DX mobile robot from the robot library as a rigidBodyTree object.

[pioneerRBT,pioneerRBTInfo] = loadrobot("amrPioneer3DX");

Add the two robot models specified as a rigidBodyTree object to the scenario using
robotPlatform objects.

robotA = robotPlatform("MobileRobotA",scenario,...
            RigidBodyTree=pioneerRBT,...
            InitialBasePosition=[loadingPosition,0]);
robotB = robotPlatform("MobileRobotB",scenario,...
            RigidBodyTree=pioneerRBT,...
            InitialBasePosition=[unloadingPosition,0]);

Visualize the scenario with the robots.
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show3D(scenario);
view(-65,45)
light

Mount Lidar Sensor on Robots

A lidar sensor is mounted on each robot for obstacle detection.

Specify lidar sensor configurations.

lidarConfig = struct(angleLower=-120,...
                          angleUpper=120,...
                          angleStep=0.2,...
                          maxRange=3,...
                          updateRate=2);

Create lidar sensor model.

lidarmodel = robotLidarPointCloudGenerator(...
                AzimuthResolution=lidarConfig.angleStep,...
                AzimuthLimits=[lidarConfig.angleLower,lidarConfig.angleUpper],...
                ElevationLimits=[0 1],...
                ElevationResolution=1,...
                MaxRange=lidarConfig.maxRange,...
                UpdateRate=lidarConfig.updateRate,...
                HasOrganizedOutput=true);

Mount a sensor on each of the mobile robots.
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lidarA = robotSensor("LidarA",robotA,lidarmodel,MountingLocation=[0 0 0.2]);
lidarB = robotSensor("LidarB",robotB,lidarmodel,MountingLocation=[0 0 0.2]);

Sensor Data Visualization

During the simulation of the robotScenario, use the provided plotFrames output from the scene
as the parent axes to visualize your sensor data in the correct coordinate frames.

[ax,plotFrames] = show3D(scenario);
view(-65,45)
light

Visualize the lidar sensor point cloud with scatter plot.

[pointCloudA,pointCloudB] = exampleHelperInitializeSensorVisualization(ax,plotFrames);

Plan Initial Paths for Robots

To get an initial plan, use the binary occupancy map extracted from the scenario. In Cuboid based
scenario, left and right-side box meshes and in SDF based scenario, left and right-side shelf models
are considered as static elements. Therefore, these areas are considered in the occupancy map, by
enabling the IsBinaryOccupied parameter.

Get Binary Occupancy Map from Scenario

map = binaryOccupancyMap(scenario,MapHeightLimits=[0 5],...
                               GridOriginInLocal=[-5 -6],...
                               MapSize=[20 12]);
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Visualize the 2-D binary occupancy map.

figure;
show(map)

Plan Initial Paths for Mobile Robots

Use the plannerAStarGrid planner to plan the paths for the robots with the knowledge of the
obstacles known in prior. During the scenario simulation, the robots can react to other obstacles
detected by the lidar sensors.

Store the grid locations of the loading and unloading positions on the map grid.

loadingGridLocation = world2grid(map,loadingPosition);
unloadingGridLocation = world2grid(map,unloadingPosition);

Plan the path for mobile robot A from loading to unloading position.

plannerA = plannerAStarGrid(map);
plannedGridPathA = plan(plannerA,loadingGridLocation,unloadingGridLocation);
plannedWorldPathA = grid2world(map,plannedGridPathA);

Plan the path for mobile robot B from unloading to loading position.

plannerB = plannerAStarGrid(map);
plannedGridPathB = plan(plannerB,unloadingGridLocation,loadingGridLocation);
plannedWorldPathB = grid2world(map,plannedGridPathB);
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Create Kinematic Motion Model for Robots

The AMR Pioneer 3DX is a small differential-drive robot whose kinematic motion model is modeled
using the differentialDriveKinematics object. Since this robot model is from the robot library,
the kinematic models parameters are pre-defined. Modify the motion inputs and wheel speed range of
the vehicle.

% Specify kinematic motion model for robot A.
robotDiffA = copy(pioneerRBTInfo.MobileBaseMotionModel);
robotDiffA.VehicleInputs = "VehicleSpeedHeadingRate";
robotDiffA.WheelSpeedRange = [-Inf Inf];

% Specify kinematic motion model for robot B.
robotDiffB = copy(robotDiffA);

Get Start and Goal Poses for Simulation

The current pose of each mobile robot is initialized with first waypoint from the planned path. The
goal pose of each mobile robot is the last waypoint from the planned path.

% Get Start and Goal Poses for robot A.
robotAStartPosition = plannedWorldPathA(1,:);
robotAGoalPosition = plannedWorldPathA(end,:);
robotAInitialOrientation = 0;
robotACurrentPose = [robotAStartPosition,robotAInitialOrientation]';

% Get Start and Goal Poses for robot B.
robotBStartPosition = plannedWorldPathB(1,:);
robotBGoalPosition = plannedWorldPathB(end,:);
robotBInitialOrientation = 0;
robotBCurrentPose = [robotBStartPosition,robotBInitialOrientation]';

Create Controllers for Path Following and Obstacle Avoidance

Use controllerPurePursuit motion controller to make the robot follow the planned path.

% Setup controllerPurePursuit for robot A.
controllerA = controllerPurePursuit;
controllerA.Waypoints = plannedWorldPathA;
controllerA.DesiredLinearVelocity = 0.6;
controllerA.MaxAngularVelocity = 2;
controllerA.LookaheadDistance = 0.3;

% Setup controllerPurePursuit for robot B.
controllerB = controllerPurePursuit;
controllerB.Waypoints = plannedWorldPathB;
controllerB.DesiredLinearVelocity = 0.6;
controllerB.MaxAngularVelocity = 2;
controllerB.LookaheadDistance = 0.3;

To react to obstacles in the path, the robots need to be equipped with an obstacle avoidance
algorithm. The controllerVFH computes steering angle based on the inputs from a lidar sensor.

% Setup controllerVFH for robot A.
vfhA = controllerVFH;
vfhA.UseLidarScan = true;
vfhA.SafetyDistance = 1;
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% Setup controllerVFH for robot B.
vfhB = controllerVFH;
vfhB.UseLidarScan = true;
vfhB.SafetyDistance = 1;

Simulate Robots in Scenario

Now that the warehouse scenario has been configured, visualize the original planned paths and then
simulate the actual behavior of the mobile robots in the scenario.

Start by overlaying the original planned paths on the scenario. Observe how the robot moves with
regards to the unexpected obstacle.

hold(ax,"on")
% Visualize planned path for robot A.
plannedPathA = plot(ax,plannedWorldPathA(:,1),plannedWorldPathA(:,2),"-bs",...
                    LineWidth=1,...
                    MarkerSize=1.5,...
                    MarkerEdgeColor="b",...
                    MarkerFaceColor=[0.5 0.5 0.5]);

% Visualize planned path for robot B.
plannedPathB = plot(ax,plannedWorldPathB(:,1),plannedWorldPathB(:,2),"-cs",...
                   LineWidth=1,...
                   MarkerSize=1.5,...
                   MarkerEdgeColor="b",...
                   MarkerFaceColor=[0.5 0.5 0.5]);
hold(ax,"off")

Set up and run the simulation.

setup(scenario)

robotAReached = false;
robotBReached = false;
stopSimulation = false;
  
while ~stopSimulation
    
    if ~robotAReached
        % Get current pose of the robot A, along with lidar sensor point
        % cloud till robot reaches to destination.
        [robotACurrentPose, isUpdatedA, robotAReached, pointCloudA] = ...
            exampleHelperGetCurrentPose(controllerA, robotDiffA, vfhA, lidarA, ...
                    lidarConfig, robotACurrentPose, robotAGoalPosition, robotAReached);
    end

    if ~robotBReached
        % Get current pose of the robot B, along with lidar sensor point
        % cloud till robot reaches to destination.
        [robotBCurrentPose, isUpdatedB, robotBReached, pointCloudB] = ...
            exampleHelperGetCurrentPose(controllerB, robotDiffB, vfhB, lidarB, ...
                    lidarConfig, robotBCurrentPose, robotBGoalPosition, robotBReached);
    end

    % Stop simulation if both robots reached to the destination.
    if robotAReached && robotBReached
        stopSimulation = true;
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    end

    % Update plot when lidar sensor readings are updated.
    if isUpdatedA || isUpdatedB
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end

    if ~robotAReached
        % Move robot A with current robot pose.
        move(robotA,"base",[robotACurrentPose(1), robotACurrentPose(2), 0, ...
                            zeros(1,6), eul2quat([robotACurrentPose(3), 0,0]),...
                            zeros(1,3)]);

        hold(ax,"on")
        % Visualize the path followed by Robot A.
        followedPathA = plot(ax,robotACurrentPose(1),robotACurrentPose(2),"-gs",...
                                LineWidth=1,...
                                MarkerSize=1.5,...
                                MarkerEdgeColor="g",...
                                MarkerFaceColor=[0.5 0.5 0.5]);
        hold(ax,"off")

    end

    if ~robotBReached
        % Move robot B with current robot pose.
        move(robotB,"base",[robotBCurrentPose(1), robotBCurrentPose(2), 0, ...
                            zeros(1,6), eul2quat([robotBCurrentPose(3), 0,0]),...
                            zeros(1,3)]);

        hold(ax,"on")
        % Visualize the path followed by Robot B.
        followedPathB = plot(ax,robotBCurrentPose(1),robotBCurrentPose(2),"-rs",...
                                LineWidth=1,...
                                MarkerSize=1.5,...
                                MarkerEdgeColor="r",...
                                MarkerFaceColor=[0.5 0.5 0.5]);
        hold(ax,"off")
    end

    hold(ax,"on")
    legend(ax,[plannedPathA, plannedPathB, followedPathA, followedPathB],...
               ["Planned Path for RobotA","Planned Path for RobotB",...
                "Path Followed by RobotA","Path Followed by RobotB"])
    hold(ax,"off")
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scenario.
    updateSensors(scenario);
end
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Perform Co-Simulation between Simulink and Gazebo
This example shows how to set up a synchronized simulation between Simulink™ and Gazebo to send
commands and receive data from Gazebo.

Setup Gazebo Simulation Environment

For this example, use your own Linux environment with Gazebo or download the provided Virtual
Machine with ROS and Gazebo. In the virtual machine (VM), the required Gazebo plugin is located
in /home/user/src/GazeboPlugin.

For more information on the Linux VM and the requirements for setting up your own Linux
environment with Gazebo, see “Gazebo Simulation Environment Requirements and Limitations” on
page 2-65.

If using your own Linux environment, follow the steps in Install Gazebo Plugin Manually on page 1-
0 . Othwerise, go to Launch Gazebo Simulation Environment on page 1-0 .

Install Gazebo Plugin Manually

Obtain the plugin source code as a zip package. This function creates a folder called GazeboPlugin
in your current working directory and compresses it as GazeboPlugin.zip.

packageGazeboPlugin

Copy the GazeboPlugin.zip to your Linux machine that meets the following requirement:

Unzip the package on your Linux platform, for this example we unpack to /home/user/src/
GazeboPlugin.

Run these commands in the terminal to compile the plugin.

cd /home/user/src/GazeboPlugin

If the build folder already exists, remove it.

rm -r build

Install the plugin.

mkdir build
cd build
cmake ..
make

The plugin location is /home/user/src/GazeboPlugin/export/lib/
libGazeboCoSimPlugin.so.

Remove the generated plugin from host computer.

if exist('GazeboPlugin', 'dir')
    rmdir('GazeboPlugin', 's');
end

if exist('GazeboPlugin.zip', 'file')
    delete('GazeboPlugin.zip');
end
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Launch Gazebo Simulation Environment

Open a terminal in the VM or your own Linux operating system, run the following commands to
launch the Gazebo simulator.

cd /home/user/src/GazeboPlugin/export
export SVGA_VGPU10=0
gazebo ../world/multiSensorPluginTest.world --verbose

These commands launch a Gazebo simulator with:

• Two laser range finders: hokuyo0 and hokuyo1
• Two RGB cameras: camera0 and camera1
• Two depth cameras: depth_camera0 and depth_camera1
• Two IMU sensors: imu0 and imu1
• Unit box model: unit_box

The multiSensorPluginTest.world is located in /home/user/src/GazeboPlugin/world
folder. This world file includes the Gazebo plugin for co-simulation with Simulink using the following
lines in its .xml body:

<plugin name="GazeboPlugin" filename="lib/libGazeboCoSimPlugin.so"><portNumber>14581</portNumber></plugin>
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The filename field must be pointing to the location of the compiled Gazebo plugin. This path can be
relative to the location Gazebo itself is launched, or you could add it to the Gazebo plugin search path
by running:

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:/home/user/src/GazeboPlugin/export

Configure Gazebo Co-Simulation

Open the performCoSimulationWithGazebo model, which demonstrates how to receive sensor
data from these simulated sensors and how to actuate the unit box model from Simulink.

open_system("performCoSimulationWithGazebo")

Before simulating the model, configure Gazebo Co-Simulation using Gazebo Pacer block:

hilite_system('performCoSimulationWithGazebo/Gazebo Pacer')

Open the block and click the Configure Gazebo network and simulation settings link.

open_system('performCoSimulationWithGazebo/Gazebo Pacer')
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In the Network Address drop down, select Custom. Enter the IP address of your Linux machine. The
default Port for Gazebo is 14581. Set Response timeout to 10 seconds.

Click the Test button to test the connection to the running Gazebo simulator.

Get Sensor Data

Use the Gazebo Read block to obtain data on specific topics from three sensors:

• IMU, /gazebo/default/imu0/link/imu/imu
• Lidar Scan, /gazebo/default/hokuyo0/link/laser/scan
• RGB camera, /gazebo/default/camera0/link/camera/image

Display the IMU readings and visualize the Lidar Scan and RGB Image using MATLAB® function
blocks.
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Actuate Gazebo Model

Use the Gazebo Apply Command block to apply a constant force in the z-direction to the unit box
that results in an acceleration of 1 m/s2. Create a blank ApplyLinkWrench message using Gazebo
Blank Message. Specify elements of the message to apply the force to the unit_box/link entity
using the Bus Assignment block. Use Gazebo Read to output the ground truth pose of the box. The
displacement of the box over a 1 second period should be close to 0.5 meters.
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Perform Co-Simulation

To start co-simulation,click Run. You can also step the simulation using Step Forward. Step Back is
not supported during co-simulation.

While the simulation is running, notice that Gazebo simulator and Simulink time are synchronized.

This model visualizes the Gazebo sensor data using MATLAB function block and MATLAB plotting
functionalities. Here is a snapshot of the image data obtained from Gazebo camera:
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Here is a snapshot of the lidar scan image:
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The time-plot of the position of the unit box block in z-direction can be viewed using Data Inspector.
The block tracks a parabolic shape due to the constant acceleration over time.
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The position of the unit box at the end of simulation is 1.001, leading to a 0.5001 displacement, which
is slightly different from the expected value of 0.5. This is due to the error of the Gazebo physics
engine. Make the max step size in the Gazebo physics engine smaller to reduce this error.
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Time Synchronization

During co-simulation, you can pause Simulink and the Gazebo Simulator at any time using Pause

Note: Gazebo pauses one time step ahead of the simulation.

 

This is due to the following co-simulation time sequence:

Sensor data and actuation commands are exchanged at the correct time step. The execution chooses
to step Gazebo first, then Simulink. The simulation execution is still on the t+1, Simulink just stays on
the previous step time until you resume the model.

Next Steps

• “Control a Differential Drive Robot in Gazebo with Simulink” on page 1-70
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Configure Gazebo and Simulink for Co-simulation of a
Manipulator Robot

Set up a UR10 robot model to perform co-simulation between Gazebo and Simulink™. Co-simulation
with Gazebo enables you to connect directly from Simulink to Gazebo and control simulation pacing
using the Simulink model.

For an introduction to Gazebo co-simulation and getting connected for the first time, see “Perform
Co-Simulation between Simulink and Gazebo” on page 1-431. This example uses the virtual machine
and plug-in provided in that example, but also tells you how to configure your own model and system.
The robot arm used in this example is a 6-DoF robot, the Universal Robots UR10.

Create Robot Representations for MATLAB and Gazebo

First, add the manipulator to a Gazebo .world file. In this example, a world file is provided
(Ur10BasicWithPlugin.world) that was created from the provided robot models in the
loadrobot function. If your goal is just to interface with the Gazebo simulation, a world file is
sufficient. To see how to control a model using just the world file, see “Control a Differential Drive
Robot in Gazebo with Simulink” on page 1-70. However, the goal of this example is to control the
robot using model-based tools in MATLAB® and Simulink. Therefore, you should also define a rigid
body tree robot model for your manipulator in MATLAB. There are several ways to obtain these
representations together:

• Provided Robot Models: Obtain the rigid body tree from the loadrobot function, then create a
model for Gazebo using the source repository.

• Custom URDF Models: Import a URDF file as a rigid body tree object via the importrobot
function. Manually modify the URDF file to make it compatible with the Gazebo SDF model
format. Save the model to a new or existing .world file. If you only have a Gazebo .world file,
consider modifying a similar manipulator or building the robot from scratch, using queries of the
Gazebo world.

Load Robot Model

To get started, load and show the robot in MATLAB.

[robot,info] = loadrobot('universalUR10','Gravity',[0 0 -9.81]);
show(robot);
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Create Gazebo World from Robot Model

The Ur10BasicWithPlugin.world world file attached to this example is also provided in the
virtual machine from the “Perform Co-Simulation between Simulink and Gazebo” on page 1-431
example. If you are using the virtual machine provided in that example, skip directly to Open World in
Gazebo on page 1-0 .

The world file contains a UR10 robot with the base joint fixed to the ground and a red box to
manipulator. The world was created using the source repository provided in the info output:

info.Source

ans = 
"https://github.com/ros-industrial/universal_robot/tree/1.2.1"

The following steps were used to create the Ur10BasicWithPlugin.world file:

• Open the repository linked in info.Source and install per the instructions in the readme file.
Make sure the tags match so that the robot's numerical data matches that used in the equivalent
rigid body tree object. If using the provided virtual machine, make sure to allot at least 4 GB RAM
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and 4 cores to avoid compilation errors. On the provided Virtual Machine, some of the tools in the
associated ROS package have been disabled to avoid dependency issues during installation:

%# Ignore the ur_kinematics package
touch universal_robot/ur_kinematics/CATKIN_IGNORE

• The repository installs a package to open a world using the roslaunch command:

roslaunch ur_gazebo ur10.launch

• Save the newly created world to a .world file. You may also save the model to an SDF file and add
it to an existing world, manually or via the Gazebo GUI.

• In the world file source code, fix the robot to the ground plane by manually adding a fixed joint to
the robot model.

<!-- Add a custom fixed joint that fixes the robot to the world-->
<joint name="world_to_robot" type="fixed">
   <parent>world</parent> 
   <child>ur10::base_link</child>
</joint>

• In the world file source code, add a red box object that can be moved around.

<!-- Add a red box -->
    <model name='redBox'>
      <link name='link'>
% See file for more

• In the world file source code, attach the Gazebo plug-in by adding the following lines:

<!-- Include the Gazebo plugin to ensure connection to MATLAB/Simulink -->
<plugin name="GazeboPlugin" filename="lib/libGazeboCoSimPlugin.so">
    <portNumber>14581</portNumber>
</plugin>

The Ur10BasicWithPlugin.world world file attached to this example has additional comments to
clarify the various elements. To learn more about robot elements in a Gazebo world, search the
Gazebo documentation for the "Make A Simple Gripper" tutorial.

Set Up Gazebo with Robot Model and Plugin

To run this example, you must have access to a machine with Gazebo with the plugin for co-
simulation installed and the provided world file. These steps are covered in “Perform Co-Simulation
between Simulink and Gazebo” on page 1-431. If you are using the virtual machine provided in that
example, skip directly to Open World in Gazebo on page 1-0 . Virtual machines downloaded prior to
the R2021a release may need to be updated.

To execute this example, you must either be able to connect to a machine with Linux installed with an
environment that has been configured accordingly:

• Set up the Gazebo environment and add the plug-in. Follow the Install Gazebo Plugin Manually
instructions in “Perform Co-Simulation between Simulink and Gazebo” on page 1-431. This
example assumes that the plug-in is located in the home/user/src/GazeboPlugIn directory.

• Add the provided world file to the directory /home/user/worlds
• Access the robot mesh files from the robot model. The mesh files are Collada (*.DAE files) that are

required to visualize the robot. This robot was created using loadrobot, so the repository linked
in info.Source contains all the associated information, including meshes.
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disp(info.Source)

https://github.com/ros-industrial/universal_robot/tree/1.2.1

• Execute the following commands on the Gazebo machine to clone the linked repository. The URL
in the second command should match info.Source.

cd /home/user/catkin_ws/src
git clone -b 1.2.1 https://github.com/ros-industrial/universal_robot/

%# (Optional) Ignore UR_Kinematic package to avoid dependency issue during build
touch universal_robot/ur_kinematics/CATKIN_IGNORE

Please note that is is not necessary to build the package for this example to work (this example just
requires the associated mesh files), though doing so will not cause any issues either.

Check to ensure the robot mesh files are located at /home/user/catkin_ws/src/
universal_robot/ur_description/.

Open World in Gazebo

Open the world by running these commands in the terminal of the Gazebo machine:

cd /home/user/src/GazeboPlugin/export
export SVGA_VGPU10=0
gazebo /home/user/worlds/Ur10BasicWithPlugin.world --verbose

Gazebo shows the robot and any other objects in the world.
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If the Gazebo simulator fails to open, you may need to reinstall the plugin. See Install Gazebo
Plugin Manually in “Perform Co-Simulation between Simulink and Gazebo” on page 1-431.

Connect to Gazebo

Next, initialize the Gazebo connection to MATLAB and Simulink. Specify the IP address and a port
number of 14581, which is the default port for the Gazebo plugin.

ipGazebo = '192.168.116.162'; % Replace this with the IP of the Gazebo machine
gzinit(ipGazebo,14581);

Inspect the Model

Verify that the model has the desired elements using the Gazebo MATLAB interface commands. Call
the gzmodel function to return all the models in the current Gazebo world.

gzmodel('list')

MODEL LIST:
ground_plane
ur10
redBox

List the links in the UR10 robot model.

gzlink("list","ur10")

MODEL:  ur10

LINKS:  base_link forearm_link shoulder_link upper_arm_link wrist_1_link wrist_2_link wrist_3_link

Control Robot Position in Simulink

Now that the Gazebo world is connected to MATLAB, you can perform co-simulation from Simulink to
advance the simulation state in Gazebo.

The gazeboCosimControl model controls the end-effector position of the manipulator using the
sliders in the User Input: End Effector section. The Inverse Kinematics subsystem generates a
joint configuration that achieves the desired postion. Then, the Joint Controller subsystems
generates torque forces for each joint to reach this position. Details about this model can be found in
the “Control Manipulator Robot with Co-Simulation in Simulink and Gazebo” on page 1-447 example.

The Gazebo Pacer block controls the stepping of Gazebo based on Simulink steps.

Open the model and initialize the model parameters for the trajectory, starting position, and bus
objects for sending commands.

% Open the model
open_system('gazeboCosimControl');

% Initialize parameters
Ts = 0.01;
Ts_trajectory = 0.05;
q0 = [0 -70 140 0 0 0]' * pi/180; 
load('custom_busobjects_basic'); 
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Simulate the model for a few seconds.

sim('gazeboCosimControl','StopTime','5');

Use the sliders in the User Input: End Effector area on the left to control the position of the robot.

Now run the model directly using the green "run" arrow.

While the simulation is running, you may send MATLAB commands to update the world state. For
example, move the red box to a new location.

% Move the box to a new position on the opposite side of the robot and 0.3 m off the ground
gzlink("set","redBox","link","Position",[0.5 -0.4 .3])

STATUS:  Succeed

MESSAGE:  Parameter set successfully.

Change the robot position by setting a joint position and see how the controller responds.

% Move the robot shoulder lift joint to pi/4
[status,message] = gzjoint('set','ur10','shoulder_lift_joint','Axis','0','Angle',-pi/4);

Since Gazebo is now being stepped by Simulink, pausing the Simulink model also pauses the Gazebo
simulation.

Next Steps

To learn more about the gazeboCosimControl model for controlling the robot in simulation, see the
“Control Manipulator Robot with Co-Simulation in Simulink and Gazebo” on page 1-447 example.
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Control Manipulator Robot with Co-Simulation in Simulink and
Gazebo

Simulate control of a robotic manipulator using co-simulation between Simulink and Gazebo. The
example uses Simulink™ to model the robot behavior, generate control commands, send these
commands to Gazebo, and control the pace of the Gazebo simulation.

• The Gazebo Pacer block steps the Gazebo simulation at the same rate as Simulink, which enables
commands to be executed accurately while simulating the physical dynamics in Gazebo.

• The Gazebo Read and Gazebo Apply Command blocks are used for communication between
MATLAB® and Gazebo.

• The gzlink, gzjoint, and gzworld functions provide easy access to model parameters and
queries.

This example reviews each of these components and their configurations in detail using a Simulink
model that controls the positions of a Universal Robotics UR10 manipulator. The model uses inverse
kinematics to relate desired end effector pose to joint positions, then applies a joint-space PD
controller with dynamic compensation feedforward terms to govern the motion.

For more information about setting up the environment for this example, see “Configure Gazebo and
Simulink for Co-simulation of a Manipulator Robot” on page 1-441.

Set Up Gazebo with Robot Model and Plugin

To setup the Gazebo world, install the necessary plugins, and test the connection with MATLAB and
simulink, see the Set Up Gazebo with Robot Model and Plugin section of the “Configure Gazebo
and Simulink for Co-simulation of a Manipulator Robot” on page 1-441 example.

Open World in Gazebo

Open the world by running these commands in the terminal of the Gazebo machine:

cd /home/user/src/GazeboPlugin/export
export SVGA_VGPU10=0
gazebo /home/user/worlds/Ur10BasicWithPlugin.world --verbose

Gazebo shows the robot and any other objects in the world. If the Gazebo simulator fails to open, you
may need to reinstall the plugin. See Install Gazebo Plugin Manually in “Perform Co-Simulation
between Simulink and Gazebo” on page 1-431.
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Connect to Gazebo

Next, initialize the Gazebo connection to MATLAB and Simulink. Specify the IP address and a port
number of 14581, which is the default port for the Gazebo plugin.

ipGazebo = '192.168.116.162'; % Replace this with the IP of the Gazebo machine
gzinit(ipGazebo,14581);

Load the Robot Model

This model uses a universal UR10 robot created using loadrobot. The Gazebo model and robot models
match since they are from the same source repository. For more information, see “Configure Gazebo
and Simulink for Co-simulation of a Manipulator Robot” on page 1-441.

robot = loadrobot('universalUR10','Gravity',[0 0 -9.81],'DataFormat','column');
showdetails(robot)

--------------------
Robot: (10 bodies)

 Idx             Body Name                            Joint Name                            Joint Type             Parent Name(Idx)   Children Name(s)
 ---             ---------                            ----------                            ----------             ----------------   ----------------
   1             base_link                           world_joint                                 fixed                     world(0)   base(2)  shoulder_link(3)  
   2                  base            base_link-base_fixed_joint                                 fixed                 base_link(1)   
   3         shoulder_link                    shoulder_pan_joint                              revolute                 base_link(1)   upper_arm_link(4)  
   4        upper_arm_link                   shoulder_lift_joint                              revolute             shoulder_link(3)   forearm_link(5)  
   5          forearm_link                           elbow_joint                              revolute            upper_arm_link(4)   wrist_1_link(6)  
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   6          wrist_1_link                         wrist_1_joint                              revolute              forearm_link(5)   wrist_2_link(7)  
   7          wrist_2_link                         wrist_2_joint                              revolute              wrist_1_link(6)   wrist_3_link(8)  
   8          wrist_3_link                         wrist_3_joint                              revolute              wrist_2_link(7)   ee_link(9)  tool0(10)  
   9               ee_link                        ee_fixed_joint                                 fixed              wrist_3_link(8)   
  10                 tool0        wrist_3_link-tool0_fixed_joint                                 fixed              wrist_3_link(8)   
--------------------

Set the initial configuration of the robot.

q0 = [0 -70 140 0 0 0]' * pi/180; 

Load Simulink Model

The gazeboCosimControl model controls the end-effector position of the manipulator using the
sliders in the User Input: End Effector section. The Inverse Kinematics subsystem generates a
joint configuration that achieves the desired postion. Then, the Joint Controller subsystems
generates torque forces for each joint to reach this position

Open the model.

open_system('gazeboCosimControl');

Set Controller and Trajectory Sample Times

Ts = 0.01;
Ts_trajectory = 0.05;

The sample time of the controller is short to ensure good performance. The sample time of trajectory
is longer to ensure simulation speed, which is typical for high-level tasks like camera sensor, inverse
kinematics, and trajectory generation.

Understand the model construction

The Simulink model consists of four areas:
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• User input: Provides inputs for the desired robot end effector position using sliders.
• Control: Maps the end effector position to joint position using inverse kinematics and controls

joint position using a computed torque controller
• Gazebo Pacer: Maintains the connection to Gazebo to ensure that the Simulink model steps both

simulations.
• Gazebo Robot: Sends commands to and receives commands from the Gazebo world.

These sections are outlined in greater detail below.

User Input

The user input has 6 sliders that control the end effector position: three to control the X, Y, and Z
position in space, and three to control the orientation.

Control

The control section translates the desired end-effector pose to joint torques. First, the Inverse
Kinematics subsystem computes joint positions that satisfy a target end-effector pose. Next, the
Joint Controller subsystem produces actuator input torques given the joint reference position,
velocity, and acceleration, and the current robot state. The state contains the measured position and
velocity output from Gazebo.

Inverse Kinematics Subsystem

Inverse kinematics calculates the joint position for the corresponding end effector pose (position and
orientation) given an initial guess. For fast convergence, set the initial condition of the unit delay. In
this subsystem, the weights are uniform, implying that the solution should place equal importance on
achieving all positions and orientations in the desired pose.
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Joint Controller subsystem

In this example, the joint controller uses feedback and a feedforward terms. Gravity torque and
velocity product values combine to form the feedforward term. A proportional-derivative (PD)
controller generates the feedback term. For more details about joint controllers, refer to “Perform
Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page 1-268.

Gazebo Pacer

The Gazebo Pacer block ensures co-simulation with Gazebo by stepping the Gazebo simulation in sync
with Simulink steps. This is important for applications like this model, where a controller is used to
directly govern the position of a robot in the Gazebo world. The joint measurements and torque
commands must be synced to ensure the simulation reflects of the actual behavior.

In the block mask, specify the sample time as Ts. You can test your Gazebo connection using the
Configure Gazebo network and simulation settings link. This connection was already set up
using gzinit.
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Gazebo Model

The Gazebo Model subsystem contains the blocks used to communicate with the Gazebo world. In
this case, the controller applies a torque to each joint and reads back the joint position and velocity.

Apply Joint Torque

For each joint, the torque must be applied in the Set <joint name> subsystems of the Transmit to
Gazebo area of the Gazebo model subsystem. For example, for the shoulder pan joint, the tools to
send the shoulder plan subsystem are contained in the Set Shoulder Pan subsystem.
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Each of these subsystems uses a Bus Assignment block whose inputs define the type of bus, the
details of the model and duration, and the resultant command.

The Gazebo Blank Message block defines the bus type to be a Gazebo message format of the
appropriate type. In the block parameters dialog, select "ApplyJointTorque" from the list of command
types. The block is required to ensure that the correct bus template is used, i.e. that the port is the
Bus Assignment block have the correct values.

The Gazebo Select Entity block selects the object to which this message will be applied. In this
case, since a torque is being applied, the "entity" is a joint. Since this subsystem will apply torque to
the shoulder joint, select the corresponding joint in the Gazebo world from the list of entity types. As
long as a connection to the Gazebo world has been established, this list will be automatically
populated. If the connection is lost, click the "Configure Gazebo network and simulation settings" link
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to reestablish, or use the gzinit command line interface. The Gazebo world must be open for this
operation to succeed.

The Gazebo Apply Command block takes the contents of the message sends it to the Gazebo server.
Open the block dialog parameters, select the Command type parameter, and select ApplyJointTorque
to send the corresponding command to Gazebo.

The remaining inputs govern the amount and duration of the applied force. The effort inport specifies
the joint torque quantity. The index input dictates the axis to which the torque should be applied.
Since each of the revolute joints is just 1 degree of freedom, this value should be set to uint32(0) to
indicate the first axis. Finally, the duration inputs specify the duration of the applied torque, divided
into seconds and nanoseconds. For example, if a duration is 1.005 seconds, it would be 1 second and
5,000,000 nanoseconds as a bus. They are separated out to increase precision. In this case, the
controller applies the torque for the length of the sample time, previously specified to 0.01 seconds,
or 1e7 nanoseconds. Therefore the first input is zero (0 seconds) and the second input is 1e7.
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The Gazebo Model subsystem includes 5 other subsystems corresponding to the other five joints,
which have been configured in the same fashion.

Measure Joint State

The second part of the Gazebo Model interface requires reading values from Gazebo using the
Gazebo Read block for each joint. For example, the block for the shoulder pan joint is shown below.

The Gazebo Read block reads messages from the Gazebo server. In the block dialog, click "Select.."
next to the topic to choose the right topic to read from, and select the corresponding measured joint
value, /gazebo/ground_truth/joint_state/ur10/shoulder_pan_joint. This message
selects the precise ground truth value, though it is also possible to place sensors in Gazebo and read
from those instead.
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Use the Bus Selector to only choose the relevant values from the message. In this case, only the
position is measured from the Gazebo model, which is ultimately fed back to the controller.

This section also reads back the value of the red box in Gazebo. While it is possible to also set the
position of this box using a format similar to that used above, it is simpler to use the gzlink command
line interface to update the block at discrete instants during the model execution.

Customize Bus Objects for Simulation

Gazebo bus objects are generated when the cosimulation blocks are introduced in a model. Signals
from Gazebo are read through these bus objects. By default, dimensions are set to variable size since
joints can have multiple degrees of freedom. Since all joints in this example are revolute joints, they
are 1-dimensional and fixed in size, which can be specified as a property of the bus signals. This step
is optional, but it is useful to overcome limitations of variable-size signals.

Load the custom bus objects.

load('custom_busobjects_basic');   

To interactively load the bus objects, open the Bus Editor in Simulink. In the Simulink Toolstrip, on
the Modeling tab, in the Design gallery, click Bus Editor.

In the Bus Editor toolstrip, select Import > MAT File. Then, select the MAT file to load.

In the Bus Editor table, select the bus object used to read joint state, then select the corresponding
element name. For the bus object named Gazebo_SL_Bus_gazebo_msgs_JointState, select the
elements named joint_position and joint_velocity and change Dimension to 1 and
DimensionMode to Fixed.
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Run the Simulation

Reset the Gazebo world and box position before simulating using MATLAB commands. Commands
like these can be more directly incorporated into the Simulink model as a StartFcn callback to
ensure that they are executed at each Simulation run. In the Gazebo Pacer block parameters, only
the simulation time is reset when you run the model unless you change the Reset Behavior drop
down.

gzworld("reset"); % Reset the world to its initial state
gzlink("set","redBox","link","Position",[0.5 -0.4 .3]); % Move the box to a new location

STATUS:  Succeed

MESSAGE:  Parameter set successfully.

You can also run these types of commands during simulation. To do so, use the green "run" button to
simulate the Simulink model rather than the sim command to ensure that the command line can be
executed while the simulation is running.

Run the simulation for 20 seconds and test different poses using the sliders in User Input: End
Effector. Verify the inverse kinematics and joint controller are behaving properly in Gazebo.

simoutput = sim('gazeboCosimControl','StopTime','20');
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Use the Simulation Data Inspector to see behavior of the joint postions. This image shows data
when the manipulator command positions have been changed several times over the course of the
simulation.
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View Performance

Joint measurements and references are logged. Once the simulation is complete, plot the logged
outputs.

measuredPosition = simoutput.logsout{1}.Values; 
referencePosition = simoutput.logsout{2}.Values; 
figure
plot(measuredPosition.Time, measuredPosition.Data, '-', referencePosition.Time, referencePosition.Data, '--')
legend({'Meas1','Meas2','Meas3','Meas4','Meas5','Meas6','Ref1','Ref2','Ref3','Ref4','Ref5','Ref6'})
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Plan Minimum Jerk Trajectory for Robot Arm
This example shows how to plan a minimum jerk polynomial trajectory for a robotic manipulator. The
example shows how to load an included robot model, plan a path for the robot model in an
environment with obstacles, generate a minimum jerk trajectory from the path, and visualize the
generated trajectories and the robot motion.

Set Up Robot Model and Environment

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. Use
loadrobot to load the robot model into the workspace as a rigidBodyTree object. Set the output
format for configurations to "row".

robot = loadrobot("kukaIiwa14","DataFormat","row");

Generate the environment for the robot. Create collision objects and specify their poses relative to
the robot base. Visualize the environment.

env = {collisionBox(0.5,0.5,0.05) collisionSphere(0.3)};
env{1}.Pose(3,end) = -0.05;
env{2}.Pose(1:3,end) = [0.1 0.2 0.8];

show(robot);
hold on
show(env{1})
show(env{2})
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Plan Path Using manipulatorRRT

Create the RRT planner for the robot model using manipulatorRRT. Set the ValidationDistance
property to increase the number of intermediate states while interpolating the path.

rrt = manipulatorRRT(robot,env);
rrt.ValidationDistance = 0.2;

Specify a start and a goal configuration.

startConfig = [0.08 -0.65 0.05 0.02 0.04 0.49 0.04];
goalConfig =  [2.97 -1.05 0.05 0.02 0.04 0.49 0.04];

Plan the path. Due to the randomness of the RRT algorithm, set the rng seed for repeatability.

rng(0)
path = plan(rrt,startConfig,goalConfig);

Interpolate the path and retrieve the waypoints.

interpPath = interpolate(rrt,path);
wpts = interpPath';

Generate Minimum Jerk Polynomial Trajectory

The planner returns a path as an ordered set of waypoints. To pass these to a robot, you must first
determine a trajectory through them. The minjerkpolytraj function creates a smooth trajectory
with minimum jerk that hits all the specified waypoints.

Provide an initial guess for the times at which the robot arm arrives at the waypoints.

initialGuess = linspace(0,size(wpts,2)*0.2,size(wpts,2));

Specify the number of samples to take while estimating the trajectory.

numSamples = 100;

Compute the minimum jerk polynomial trajectory.

[q,qd,qdd,qddd,pp,tpts,tSamples] = minjerkpolytraj(wpts,initialGuess,numSamples);

Visualize Trajectories and Waypoints

Plot the trajectories and the waypoints over time.

minJerkPath = q';
figure
plot(tSamples,q)
hold all
plot(tpts,wpts,"x")
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Visualize Robot Motion

Use the show object function to animate the resulting motion. This visualization enables fast updates
to ensure a smooth animation.

figure;
ax = show(robot,startConfig);
hold all

% Ensure the figure pops out of the Live Editor so animations are visible
set(gcf,"Visible","on");
for i = 1:length(env)
    show(env{i},"Parent",ax);
end

for i = 1:size(minJerkPath,1)
    show(robot,minJerkPath(i,:),"PreservePlot",false,"FastUpdate",true);
    drawnow;
end

hold off
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Design and Simulate Warehouse Pick-and-Place Application
Using Mobile Manipulator in Simulink and Gazebo

This example shows how to set up an end-to-end, pick-and-place workflow for a mobile manipulator
like the KINOVA® Gen3 on a Husky® mobile robot, in Simulink®.

Overview

This example simulates a mobile manipulator identifying and recycling objects into two bins using
tools from these toolboxes:

• Robotics System Toolbox™ — Models and simulates the manipulator.
• Stateflow® — Schedules the high-level tasks in the example and step from task to task.
• ROS Toolbox™ — Connects MATLAB® and Simulink to Gazebo®.
• Computer Vision Toolbox™ and Deep Learning Toolbox™ — Perform object detection using a

simulated camera in Gazebo.

This example builds on key concepts from the following related examples:

• “Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page
1-257 — Shows how to generate and simulate interpolated joint trajectories to move from an
initial to a desired end-effector pose.

• “Pick-and-Place Workflow in Gazebo Using ROS” on page 1-302 — Shows how to setup an end-to-
end pick and place workflow for a robotic manipulator like the KINOVA® Gen3 and simulate the
robot in the Gazebo physics simulator.

• “Train YOLO v2 Network for Vehicle Detection” (Computer Vision Toolbox) — Shows how to use a
YOLO v2 object detector.

• “Get Started with Gazebo and Simulated TurtleBot” (ROS Toolbox) — Shows how to set up the
connection between MATLAB and Gazebo.

Robot Simulation and Control in Gazebo

This example uses Simulink to control two robots in Gazebo. Using ROS as the primary
communication mechanism, enables you to use the allows the official Husky and KINOVA ROS
packages for low-level motion control and sensing. This facilitates a straightforward transition from
simulation to hardware, as the ROS commands stay the same.

The supplied Gazebo world also uses the Gazebo co-simulation plug-in, which enables direct MATLAB
communication for tools such as querying the Gazebo world or directly setting the states of links in
Gazebo.

Simulated sensors

Gazebo simulates these sensors:

• RGB-D camera attached to the end-effector of the robot manipulator. The model uses this camera
feed to detect objects to pick up.

• 2-D lidar sensor at the front of the mobile robot base. The model uses this laser feed to localize
the robot in a precomputed map.
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Pick-and-Place Workflow Using Simulink and Stateflow

In this example, the mobile manipulator operates in a simulated warehouse recycling facility, picking
up recyclable objects from a central conveyer belt and transferring them to the corresponding
recycling stations one by one.

• The simulated recycling facility

• The simulated mobile manipulator that is a Kinova Gen3 manipulator on a Husky mobile robot
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Open the Simulink model to explore the pick-and-place components.

open_system('PickPlaceWorkflowSimulinkMobileArm.slx');

The Simulink model consists of these components:

1 Main Task Scheduler — This Stateflow chart schedules the tasks for the mobile manipulator to
complete the pick-and-place job. It activates tasks for the robot manipulator or the mobile robot
according to the required workflow.

2 Robot Manipulator — Implements tasks assigned to the robot manipulator by the Main Task
Scheduler. This component consists of these main modules: the Robot Arm Scheduler, the
Motion Planning subsystem and the Perception subsystem.

3 Mobile Robot — Implements tasks assigned to the mobile robot by the main scheduler. This
component consists of these modules: the Mobile Robot Scheduler, the Path Planning subsystem
and the Path Following subsystem.
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1. Main Task Scheduler

The model implements the main workflow for the mobile manipulator by using a central Stateflow
chart, which follows these steps:

1 The mobile manipulator navigates to the conveyer belt to pick up an object to recycle.
2 The RGB-D camera on the robot arm detects the poses and types of objects using deep learning.
3 The robot arm picks up the detected object.
4 The mobile manipulator navigates to the appropriate recycling bin for the detected object type

(bottle or can) and places it.
5 The robot returns to the conveyer belt and repeats this workflow until no more objects are

detected.
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2. Robot Manipulator

A. Robot Arm Scheduler

The robot arm scheduler contains the Idle, MoveToHome, Detect, PickObject, and PlaceObject
states. At any point in time, the robot arm is in one of these states, according to the task ordered by
the Main Task Scheduler. To avoid conflict, if the robot arm or mobile robot is in a non-idle state,
then the other must be in their idle state.
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B. Motion Planning

The motion planning subsystem is an enabled subsystem that, once enabled by a signal from the
robot arm scheduler, plans a trajectory and uses the ros-control package to send the command for
tracking that trajectory to the joint trajectory controller running in ROS.

The robot arm scheduler sends a signal to enable this subsystem when the robot manipulator must
move during the pick-and-place workflow. The subsystem remains enabled until the robot reaches the
desired target pose. For more information in enabled subsystems, see “Using Enabled Subsystems”
(Simulink).

C. Perception

The perception subsystem is a triggered subsystem that applies a pretrained deep learning model to
the simulated end-effector camera feed from the robot to detect recyclable parts. The deep learning
model takes a camera frame as input and outputs the 2-D location of the object (pixel position) and
the type of recycling it requires (blue or green bin). The 2-D location in the image is mapped to the
robot base frame using information about the camera properties (focal length and field of view), the
input from the depth sensor, and the robot forward kinematics.

The robot manipulator task scheduler sends a signal to trigger this subsystem when the robot must
detect the next object during the pick-and-place workflow.For more information on triggered
subsystems, see “Using Triggered Subsystems” (Simulink).
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3. Mobile robot

The Mobile Robot workflow consists of a Stateflow chart that governs the overall behavior of the
mobile robot, a triggered subsystem that plans the path using a MATLAB function, and a the path
following subsystem that uses control logic to follow the reference path.
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Building Warehouse Space Map

In order to obtain a map of the workspace, you must first scan the environment. Mount a lidar sensor
on the Husky to navigate around the environment and use the buildmap function to create an
occupancy grid map. For more information, see “Implement Simultaneous Localization And Mapping
(SLAM) with Lidar Scans” (Navigation Toolbox).

A. Mobile Robot Scheduler

The mobile robot scheduler contains the Idle, PlanPath, and FollowPath states. By default, the
mobile robot is in the Idle state, meaning that the path planning and path following systems are
inactive. The mobile robot scheduler receives task commands from the Main Task Scheduler.
Whenthe mobile robot scheduler receives a Tasks.Robot_Navigate task, it switches from the Idle
state to the PlanPath state. The scheduler than continues to step, using feedback from the path
planning and path following subystems to advance through the stages, ultimately returning to the
Idle state, which renders the task inactive and indicates to the Main Task Scheduler that it can
move on with high-level tasks. The process then repeats given new inputs from the Main Task
Scheduler.
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B. Path Planning

During the PlanPath state, the mobile robot scheduler sets taskActive to true, which triggers the
path planning subsystem. This subsystem contains a MATLAB function block that plans a path on the
provided binary occupancy grid map using a plannerRRTStar object. The subsystem returns a set
of path waypoints in SE(2), as well as a logical flag, isPath that indicates whether a path was
successfully found.

Once the mobile robot scheduler receives a value of true for isPath, it advances to the
FollowPath state.

C. Path following

In the FollowPath state, the mobile robot scheduler sets the requestFollowPath flag to true,
which triggers the path following subsystem.
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The subsystem has these main parts, listed in the order of execution:

1 Control Motion with Pure Pursuit — The Pure Pursuit block is the primary motion controller.
Given the current pose of the robot and the upcoming waypoint, it assigns a velocity to move the
robot to the waypoint.

2 Update Behaviors Given Distance to Goal — The Check Distance to Goal and Zero-
Velocity at Goal subsystems ensure that the robot stops when it has reached the goal. The
model also uses the output from the Check Distance to Goal subsystem to verify task
completion.

3 Send Commands to Gazebo via ROS — The Blank Message and Publish blocks send the
command linear and angular velocities from the Zero-Velocity at Goal subsystem to the
appropriate velocity controller on the robot in Gazebo.

Together, these components drive the robot through the Gazebo world. Once the robot reaches the
goal, the subsystem returns a value of true for atGoal, which indicates to the mobile robot
scheduler that this state is complete.

Assign Variables for Use In Model

To run the Simulink model, you must assign some parameters related to the robot, default
configurations, and target poses.

This simulation uses a KINOVA Gen3 manipulator attached to a Husky mobile robot. For the
manipulator, a model of a KINOVA Gen3 with a gripper affixed is stored in a MAT file. Load the robot
manipulator rigid body tree.

load("helperKINOVAGen3MobileArmPickPlace.mat");
show(robot)
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ans = 
  Axes (Primary) with properties:

             XLim: [-1.5000 1.5000]
             YLim: [-1.5000 1.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

Initialize Pick and Place Application

Set the initial robot arm configuration and name of the end-effector body.

initialRobotJConfig = [1.583 0.086 -0.092 1.528 0.008 1.528 -0.08];
endEffectorFrame = "gripper";

Specify the home robot arm configuration and two poses for dropping objects of two different types.
The first pose corresponds to the blue bin, for objects of type 1, and the second pose corresponds to
the green bin, for objects of type 2.

homeArmPose = trvec2tform([0.0 -0.35 0.4])*axang2tform([0 0 1 -pi/2])*axang2tform([0 1 0 pi]);
detectionArmPose = trvec2tform([0.4 0.0 0.56])*axang2tform([0 0 1 -pi/2])*axang2tform([0 1 0 pi]);
placingArmPose = trvec2tform([0.6 0.0 0.57])*axang2tform([0 0 1 -pi/2])*axang2tform([0 1 0 pi/2])*axang2tform([1 0 0 -1.4]);         
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Specify the home mobile robot pose and two poses for dropping objects in the blue and green bins,
depending on object type.

homeRobotPose = [7.95, 10.6, 0]; % x, y, theta
placingRobotPose2 =[13.16, 7.94, -0.92];
placingRobotPose1 = [15.15, 3.8, -1.752]; 

Set the step size for the simulation.

Ts = 0.1;

Start the Pick-and-Place Workflow

Start a ROS-based simulator for a KINOVA Gen3 robot and the configure MATLAB connection with
the robot simulator. This example

Start Gazebo Simulation

This example uses a virtual machine (VM) containing ROS Melodic available for download here. This
example does not support ROS Noetic as it relies on ROS packages which are only supported until
ROS Melodic.

• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Mobile Manipulator World icon to start the Gazebo world built

for this example, or run these commands:

source /opt/ros/melodic/setup.bash; source ~/catkin_ws/devel/setup.bash 
export SVGA_VGPU10=0 
export GAZEBO_PLUGIN_PATH=/home/user/src/GazeboPlugin/export:$GAZEBO_PLUGIN_PATH  
roslaunch kortex_gazebo_depth mobilemanipulator.launch

Start ROS Master and Gazebo Interface Connection

Specify the IP address and port number of the ROS master in Gazebo so that MATLAB can
communicate with the robot simulator. For this example, the ROS master in Gazebo is on
192.168.203.128:11311 and your host computer address is 192.168.31.1. Replace these with the
appropriate values corresponding to your ROS device setup. Start the ROS 1 network using rosinit.

rosIP = '172.16.34.129'; % IP address of ROS enabled machine  
rosshutdown % shut down existing connection to ROS

Shutting down global node /matlab_global_node_01327 with NodeURI http://172.16.34.1:44315/ and MasterURI http://172.16.34.129:11311.

rosinit(rosIP,11311);

Initializing global node /matlab_global_node_63154 with NodeURI http://172.16.34.1:34719/ and MasterURI http://172.16.34.129:11311.

Initialize the Gazebo Interface using gzinit.

gzinit(rosIP);

Initialize Model

Set the initial arm pose in Gazebo using ROS.

configResp = helperSetCurrentRobotJConfig(initialRobotJConfig);   

Unpause Gazebo physics.
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physicsClient = rossvcclient("gazebo/unpause_physics");
physicsResp = call(physicsClient,"Timeout",3);

Load the precomputed map of the warehouse recycling facility.

load("helperRecyclingWarehouseMap.mat");

Start the workflow. Simulate the model by selecting Run on the Simulation tab.

The model simulates until stopped.

Once both items have been moved, with the model still running, use the Gazebo MATLAB Interface to
reset the positions of the red bottle and green can:

gzlink('set','Green Can','link','Position',[7.80007 11.2462 0.736121],'Orientation',[1 0 0 0]);

STATUS:  Succeed

MESSAGE:  Parameter set successfully.

gzlink('set','Red Bottle','link','Position',[7.932210479374374  11.287119941912177 0.783803767011424],'Orientation',[1 0 0 0]);

STATUS:  Succeed

MESSAGE:  Parameter set successfully.

You can also change the position values to try out the controller on different positions. The MATLAB
interface enables you to control the Gazebo world directly from MATLAB, via commands by using
functions such as gzlink and gzmodel.

To restart the model:

• Close and re-run the script on the Ubuntu VM. Or if using the terminal and list of commands,
simply close (Ctrl+C) and call the roslaunch command again:

roslaunch kortex_gazebo_depth mobilemanipulator.launch

• Run the setup commands starting from the Initialize Model on page 1-0  section in MATLAB side
and in Simulink, select Run.
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Generate Minimum Jerk Trajectory
This example shows how to generate a minimum jerk trajectory using the Minimum Jerk Polynomial
Trajectory block.

Example Model

Open the model.

open_system("minjerk_traj_ex1.slx")

The model contains a Constant block, Waypoints, that specifies six two-dimensional waypoints to the
Waypoints port of the Minimum Jerk Polynomial Trajectory block, and another Constant block
specifies time points for each of those waypoints to the TimePoints port. The input to the Time port
is a ramp signal, to simulate time progressing.

Simulate and Display Results

Run the simulation. Scope blocks visualize the q port output of positions, the qd port output of
velocities, the qdd port output of accelerations, and the qddd port output of jerks of the trajectory.

The XY Graph shows the actual 2-D trajectory, which stays inside the defined control points, and
reaches the first and last waypoints.

Positions
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Velocities
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Accelerations
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Jerks
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x- and y-positions
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Generate Minimum Snap Trajectory
This example shows how to generate a minimum snap trajectory using the Minimum Snap Polynomial
Trajectory block.

Example Model

Open the model.

open_system("minsnap_traj_ex1.slx")

The model contains a Constant block, Waypoints, that specifies six two-dimensional waypoints to the
Waypoints port of the Minimum Jerk Polynomial Trajectory block, and another Constant block
specifies time points for each of those waypoints to the TimePoints port. The input to the Time port
is a ramp signal, to simulate time progressing.

Simulate and Display Results

Run the simulation. Scope blocks visualize the q port output of positions, the qd port output of
velocities, the qdd port output of accelerations, the qddd port output of jerks, and qdddd port output
of snaps of the trajectory.
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The XY Graph shows the actual 2-D trajectory, which stays inside the defined control points, and
reaches the first and last waypoints.

Positions

Velocities

 Generate Minimum Snap Trajectory

1-485



Accelerations
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Jerks

 Generate Minimum Snap Trajectory
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Snaps
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x- and y-positions

 Generate Minimum Snap Trajectory
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• “Rigid Body Tree Robot Model” on page 2-2
• “Build a Robot Step by Step” on page 2-6
• “Inverse Kinematics Algorithms” on page 2-10
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Rigid Body Tree Robot Model
In this section...
“Rigid Body Tree Components” on page 2-2
“Robot Configurations” on page 2-4

The rigid body tree model is a representation of a robot structure. You can use it to represent robots
such as manipulators or other kinematic trees. Use rigidBodyTree objects to create these models.

A rigid body tree is made up of rigid bodies (rigidBody) that are attached via joints
(rigidBodyJoint). Each rigid body has a joint that defines how that body moves relative to its
parent in the tree. Specify the transformation from one body to the next by setting the fixed
transformation on each joint (setFixedTransform).

You can add, replace, or remove bodies from the rigid body tree model. You can also replace joints for
specific bodies. The rigidBodyTree object maintains the relationships and updates the rigidBody
object properties to reflect this relationship. You can also get transformations between different body
frames using getTransform.

Rigid Body Tree Components
Base

Every rigid body tree has a base. The base defines the world coordinate frame and is the first
attachment point for a rigid body. The base cannot be modified, except for the Name property. You can
do so by modifying the BaseName property of the rigid body tree.

Rigid Body

The rigid body is the basic building block of rigid body tree model and is created using rigidBody. A
rigid body, sometimes called a link, represents a solid body that cannot deform. The distance between
any two points on a single rigid body remains constant.

When added to a rigid body tree with multiple bodies, rigid bodies have parent or children bodies
associated with them (Parent or Children properties). The parent is the body that this rigid body is
attached to, which can be the robot base. The children are all the bodies attached to this body
downstream from the base of the rigid body tree.
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Each rigid body has a coordinate frame associated with them, and contains a rigidBodyJoint
object.

Joint

Each rigid body has one joint, which defines the motion of that rigid body relative to its parent. It is
the attachment point that connects two rigid bodies in a robot model. To represent a single physical
body with multiple joints or different axes of motion, use multiple rigidBody objects.

The rigidBodyJoint object supports fixed, revolute, and prismatic joints.

These joints allow the following motion, depending on their type:

• 'fixed' — No motion. Body is rigidly connected to its parent.
• 'revolute' — Rotational motion only. Body rotates around this joint relative to its parent.

Position limits define the minimum and maximum angular position in radians around the axis of
motion.

• 'prismatic' — Translational motion only. The body moves linearly relative to its parent along
the axis of motion.

Each joint has an axis of motion defined by the JointAxis property. The joint axis is a 3-D unit
vector that either defines the axis of rotation (revolute joints) or axis of translation (prismatic joints).
The HomePosition property defines the home position for that specific joint, which is a point within
the position limits. Use homeConfiguration to return the home configuration for the robot, which
is a collection of all the joints home positions in the model.

Joints also have properties that define the fixed transformation between parent and children body
coordinate frames. These properties can only be set using the setFixedTransform method.
Depending on your method of inputting transformation parameters, either the
JointToParentTransform or ChildToJointTransform property is set using this method. The
other property is set to the identity matrix. The following images depict what each property signifies.
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• The JointToParentTransform defines where the joint of the child body is in relationship to the
parent body frame. When JointToParentTransform is an identity matrix, the parent body and
joint frames coincide.

• The ChildToJointTransform defines where the joint of the child body is in relationship to the
child body frame. When ChildToJointTransform is an identity matrix, the child body and joint
frames coincide.

Note The actual joint positions are not part of this Joint object. The robot model is stateless. There
is an intermediate transformation between the parent and child joint frames that defines the position
of the joint along the axis of motion. This transformation is defined in the robot configuration. See
“Robot Configurations” on page 2-4.

Robot Configurations
After fully assembling your robot and defining transformations between different bodies, you can
create robot configurations. A configuration defines all the joint positions of the robot by their joint
names.

Use homeConfiguration to get the HomePosition property of each joint and create the home
configuration.

Robot configurations are given as an array of structures.

config = homeConfiguration(robot)

config = 

  1×6 struct array with fields:

    JointName
    JointPosition

Each element in the array is a structure that contains the name and position of one of the robot
joints.

config(1)

ans = 

  struct with fields:

        JointName: 'jnt1'
    JointPosition: 0

You can also generate a random configuration that obeys all the joint limits using
randomConfiguration.

2 Robotics System Toolbox Topics

2-4



Use robot configurations when you want to plot a robot in a figure using show. Also, you can get the
transformation between two body frames with a specific configuration using getTransform.

To get the robot configuration with a specified end-effector pose, use inverseKinematics. This
algorithm solves for the required joint angles to achieve a specific pose for a specified rigid body.

See Also
rigidBodyTree | inverseKinematics

Related Examples
• “Build a Robot Step by Step” on page 2-6
• “Inverse Kinematics Algorithms” on page 2-10
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Build a Robot Step by Step
This example goes through the process of building a robot step by step, showing you the different
robot components and how functions are called to build it. Code sections are shown, but actual values
for dimensions and transformations depend on your robot.

1 Create a rigid body object.

body1 = rigidBody('body1');

2 Create a joint and assign it to the rigid body. Define the home position property of the joint,
HomePosition. Set the joint-to-parent transform using a homogeneous transformation, tform.
Use the trvec2tform function to convert from a translation vector to a homogenous
transformation.ChildToJointTransform is set to an identity matrix.

jnt1 = rigidBodyJoint('jnt1','revolute');
jnt1.HomePosition = pi/4;
tform = trvec2tform([0.25, 0.25, 0]); % User defined
setFixedTransform(jnt1,tform);
body1.Joint = jnt1;

3 Create a rigid body tree. This tree is initialized with a base coordinate frame to attach bodies to.

robot = rigidBodyTree;

4 Add the first body to the tree. Specify that you are attaching it to the base of the tree. The fixed
transform defined previously is from the base (parent) to the first body.

addBody(robot,body1,'base')

5 Create a second body. Define properties of this body and attach it to the first rigid body. Define
the transformation relative to the previous body frame.
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body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
jnt2.HomePosition = pi/6; % User defined
tform2 = trvec2tform([1, 0, 0]); % User defined
setFixedTransform(jnt2,tform2);
body2.Joint = jnt2;
addBody(robot,body2,'body1'); % Add body2 to body1

6 Add other bodies. Attach body 3 and 4 to body 2.

body3 = rigidBody('body3');
body4 = rigidBody('body4');
jnt3 = rigidBodyJoint('jnt3','revolute');
jnt4 = rigidBodyJoint('jnt4','revolute');
tform3 = trvec2tform([0.6, -0.1, 0])*eul2tform([-pi/2, 0, 0]); % User defined
tform4 = trvec2tform([1, 0, 0]); % User defined
setFixedTransform(jnt3,tform3);
setFixedTransform(jnt4,tform4);
jnt3.HomePosition = pi/4; % User defined
body3.Joint = jnt3
body4.Joint = jnt4
addBody(robot,body3,'body2'); % Add body3 to body2
addBody(robot,body4,'body2'); % Add body4 to body2

7 If you have a specific end effector that you care about for control, define it as a rigid body with a
fixed joint. For this robot, add an end effector to body4 so that you can get transformations for it.

bodyEndEffector = rigidBody('endeffector');
tform5 = trvec2tform([0.5, 0, 0]); % User defined
setFixedTransform(bodyEndEffector.Joint,tform5);
addBody(robot,bodyEndEffector,'body4');

8 Now that you have created your robot, you can generate robot configurations. With a given
configuration, you can also get a transformation between two body frames using getTransform.
Get a transformation from the end effector to the base.

config = randomConfiguration(robot)
tform = getTransform(robot,config,'endeffector','base')

config = 

  1×2 struct array with fields:

    JointName
    JointPosition

tform =
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   -0.5484    0.8362         0         0
   -0.8362   -0.5484         0         0
         0         0    1.0000         0
         0         0         0    1.0000

Note This transform is specific to the dimensions specified in this example. Values for your robot
vary depending on the transformations you define.

9 You can create a subtree from your existing robot or other robot models by using subtree.
Specify the body name to use as the base for the new subtree. You can modify this subtree by
adding, changing, or removing bodies.

newArm = subtree(robot,'body2');
removeBody(newArm,'body3');
removeBody(newArm,'endeffector')

10 You can also add these subtrees to the robot. Adding a subtree is similar to adding a body. The
specified body name acts as a base for attachment, and all transformations on the subtree are
relative to that body frame. Before you add the subtree, you must ensure all the names of bodies
and joints are unique. Create copies of the bodies and joints, rename them, and replace them on
the subtree. Call addSubtree to attach the subtree to a specified body.

newBody1 = copy(getBody(newArm,'body2'));
newBody2 = copy(getBody(newArm,'body4'));
newBody1.Name = 'newBody1';
newBody2.Name = 'newBody2';
newBody1.Joint = rigidBodyJoint('newJnt1','revolute');
newBody2.Joint = rigidBodyJoint('newJnt2','revolute');
tformTree = trvec2tform([0.2, 0, 0]); % User defined
setFixedTransform(newBody1.Joint,tformTree);
replaceBody(newArm,'body2',newBody1);
replaceBody(newArm,'body4',newBody2);

addSubtree(robot,'body1',newArm);

11 Finally, you can use showdetails to look at the robot you built. Verify that the joint types are
correct.

showdetails(robot)

 Idx          Body Name             Joint Name             Joint Type          Parent Name(Idx)   Children Name(s)
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 ---          ---------             ----------             ----------          ----------------   ----------------
   1              body1                   jnt1               revolute                   base(0)   body2(2)  newBody1(6)  
   2              body2                   jnt2               revolute                  body1(1)   body3(3)  body4(4)  
   3              body3                   jnt3               revolute                  body2(2)   
   4              body4                   jnt4               revolute                  body2(2)   endeffector(5)  
   5        endeffector        endeffector_jnt                  fixed                  body4(4)   
   6           newBody1                newJnt1               revolute                  body1(1)   newBody2(7)  
   7           newBody2                newJnt2               revolute               newBody1(6)   
--------------------

See Also
rigidBodyTree | inverseKinematics

Related Examples
• “Rigid Body Tree Robot Model” on page 2-2
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Inverse Kinematics Algorithms
In this section...
“Choose an Algorithm” on page 2-10
“Solver Parameters” on page 2-11
“Solution Information” on page 2-12
“References” on page 2-12

The inverseKinematics and generalizedInverseKinematics classes give you access to
inverse kinematics (IK) algorithms. You can use these algorithms to generate a robot configuration
that achieves specified goals and constraints for the robot. This robot configuration is a list of joint
positions that are within the position limits of the robot model and do not violate any constraints the
robot has.

Choose an Algorithm
MATLAB® supports two algorithms for achieving an IK solution: the BFGS projection algorithm and
the Levenberg-Marquardt algorithm. Both algorithms are iterative, gradient-based optimization
methods that start from an initial guess at the solution and seek to minimize a specific cost function.
If either algorithm converges to a configuration where the cost is close to zero within a specified
tolerance, it has found a solution to the inverse kinematics problem. However, for some combinations
of initial guesses and desired end effector poses, the algorithm may exit without finding an ideal
robot configuration. To handle this, the algorithm utilizes a random restart mechanism. If enabled,
the random restart mechanism restarts the iterative search from a random robot configuration
whenever that search fails to find a configuration that achieves the desired end effector pose. These
random restarts continue until either a qualifying IK solution is found, the maximum time has
elapsed, or the iteration limit is reached.

To set your algorithm, specify the SolverAlgorithm property as either
'BFGSGradientProjection' or 'LevenbergMarquardt'.

BFGS Gradient Projection

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) gradient projection algorithm is a quasi-Newton
method that uses the gradients of the cost function from past iterations to generate approximate
second-derivative information. The algorithm uses this second-derivative information in determining
the step to take in the current iteration. A gradient projection method is used to deal with boundary
limits on the cost function that the joint limits of the robot model create. The direction calculated is
modified so that the search direction is always valid.

This method is the default algorithm and is more robust at finding solutions than the Levenberg-
Marquardt method. It is more effective for configurations near joint limits or when the initial guess is
not close to the solution. If your initial guess is close to the solution and a quicker solution is needed,
consider the “Levenberg-Marquardt” on page 2-10 method.

Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm variant used in the InverseKinematics class is an error-
damped least-squares method. The error-damped factor helps to prevent the algorithm from escaping
a local minimum. The LM algorithm is optimized to converge much faster if the initial guess is close
to the solution. However the algorithm does not handle arbitrary initial guesses well. Consider using

2 Robotics System Toolbox Topics

2-10



this algorithm for finding IK solutions for a series of poses along a desired trajectory of the end
effector. Once a robot configuration is found for one pose, that configuration is often a good initial
guess at an IK solution for the next pose in the trajectory. In this situation, the LM algorithm may
yield faster results. Otherwise, use the “BFGS Gradient Projection” on page 2-10 instead.

Solver Parameters
Each algorithm has specific tunable parameters to improve solutions. These parameters are specified
in the SolverParameters property of the object.

BFGS Gradient Projection

The solver parameters for the BFGS algorithm have the following fields:

• MaxIterations — Maximum number of iterations allowed. The default is 1500.
• MaxTime — Maximum number of seconds that the algorithm runs before timing out. The default is

10.
• GradientTolerance — Threshold on the gradient of the cost function. The algorithm stops if the

magnitude of the gradient falls below this threshold. Must be a positive scalar.
• SolutionTolerance — Threshold on the magnitude of the error between the end-effector pose

generated from the solution and the desired pose. The weights specified for each component of
the pose in the object are included in this calculation. Must be a positive scalar.

• EnforceJointLimits — Indicator if joint limits are considered in calculating the solution.
JointLimits is a property of the robot model in rigidBodyTree. By default, joint limits are
enforced.

• AllowRandomRestarts — Indicator if random restarts are allowed. Random restarts are
triggered when the algorithm approaches a solution that does not satisfy the constraints. A
randomly generated initial guess is used. MaxIteration and MaxTime are still obeyed. By
default, random restarts are enabled.

• StepTolerance — Minimum step size allowed by the solver. Smaller step sizes usually mean that
the solution is close to convergence. The default is 10–14.

Levenberg-Marquardt

The solver parameters for the LM algorithm have the following extra fields in addition to what the
“BFGS Gradient Projection” on page 2-11 method requires:

• ErrorChangeTolerance — Threshold on the change in end-effector pose error between
iterations. The algorithm returns if the changes in all elements of the pose error are smaller than
this threshold. Must be a positive scalar.

• DampingBias — A constant term for damping. The LM algorithm has a damping feature
controlled by this constant that works with the cost function to control the rate of convergence. To
disable damping, use the UseErrorDamping parameter.

• UseErrorDamping — 1 (default), Indicator of whether damping is used. Set this parameter to
false to disable dampening.
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Solution Information
While using the inverse kinematics algorithms, each call on the object returns solution information
about how the algorithm performed. The solution information is provided as a structure with the
following fields:

• Iterations — Number of iterations run by the algorithm.
• NumRandomRestarts — Number of random restarts because algorithm got stuck in a local

minimum.
• PoseErrorNorm — The magnitude of the pose error for the solution compared to the desired end
effector pose.

• ExitFlag — Code that gives more details on the algorithm execution and what caused it to
return. For the exit flags of each algorithm type, see “Exit Flags” on page 2-12.

• Status — Character vector describing whether the solution is within the tolerance ('success')
or the best possible solution the algorithm could find ('best available').

Exit Flags

In the solution information, the exit flags give more details on the execution of the specific algorithm.
Look at the Status property of the object to find out if the algorithm was successful. Each exit flag
code has a defined description.

'BFGSGradientProjection' algorithm exit flags:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepToleranceSize field of the

SolverParameters property.
• 5 — No exit flag. Relevant to 'LevenbergMarquardt' algorithm only.
• 6 — Search direction invalid.
• 7 — Hessian is not positive semidefinite.

'LevenbergMarquardt' algorithm exit flags:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepToleranceSize field of the

SolverParameters property.
• 5 — The change in end-effector pose error is below the ErrorChangeTolerance field of the

SolverParameters property.
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Related Examples
• “2-D Path Tracing with Inverse Kinematics” on page 2-14
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics” on page 1-193
• “Rigid Body Tree Robot Model” on page 2-2
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2-D Path Tracing with Inverse Kinematics
Introduction

This example shows how to calculate inverse kinematics for a simple 2D manipulator using the
inverseKinematics class. The manipulator robot is a simple 2-degree-of-freedom planar
manipulator with revolute joints which is created by assembling rigid bodies into a rigidBodyTree
object. A circular trajectory is created in a 2-D plane and given as points to the inverse kinematics
solver. The solver calculates the required joint positions to achieve this trajectory. Finally, the robot is
animated to show the robot configurations that achieve the circular trajectory.

Construct The Robot

Create a rigidBodyTree object and rigid bodies with their associated joints. Specify the geometric
properties of each rigid body and add it to the robot.

Start with a blank rigid body tree model.

robot = rigidBodyTree('DataFormat','column','MaxNumBodies',3);

Specify arm lengths for the robot arm.

L1 = 0.3;
L2 = 0.3;

Add 'link1' body with 'joint1' joint.

body = rigidBody('link1');
joint = rigidBodyJoint('joint1', 'revolute');
setFixedTransform(joint,trvec2tform([0 0 0]));
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'base');

Add 'link2' body with 'joint2' joint.

body = rigidBody('link2');
joint = rigidBodyJoint('joint2','revolute');
setFixedTransform(joint, trvec2tform([L1,0,0]));
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'link1');

Add 'tool' end effector with 'fix1' fixed joint.

body = rigidBody('tool');
joint = rigidBodyJoint('fix1','fixed');
setFixedTransform(joint, trvec2tform([L2, 0, 0]));
body.Joint = joint;
addBody(robot, body, 'link2');

Show details of the robot to validate the input properties. The robot should have two non-fixed joints
for the rigid bodies and a fixed body for the end-effector.

showdetails(robot)

--------------------
Robot: (3 bodies)
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 Idx    Body Name    Joint Name    Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------    ----------    ----------    ----------------   ----------------
   1        link1        joint1      revolute             base(0)   link2(2)  
   2        link2        joint2      revolute            link1(1)   tool(3)  
   3         tool          fix1         fixed            link2(2)   
--------------------

Define The Trajectory

Define a circle to be traced over the course of 10 seconds. This circle is in the xy plane with a radius
of 0.15.

t = (0:0.2:10)'; % Time
count = length(t);
center = [0.3 0.1 0];
radius = 0.15;
theta = t*(2*pi/t(end));
points = center + radius*[cos(theta) sin(theta) zeros(size(theta))];

Inverse Kinematics Solution

Use an inverseKinematics object to find a solution of robotic configurations that achieve the given
end-effector positions along the trajectory.

Pre-allocate configuration solutions as a matrix qs.

q0 = homeConfiguration(robot);
ndof = length(q0);
qs = zeros(count, ndof);

Create the inverse kinematics solver. Because the xy Cartesian points are the only important factors
of the end-effector pose for this workflow, specify a non-zero weight for the fourth and fifth elements
of the weight vector. All other elements are set to zero.

ik = inverseKinematics('RigidBodyTree', robot);
weights = [0, 0, 0, 1, 1, 0];
endEffector = 'tool';

Loop through the trajectory of points to trace the circle. Call the ik object for each point to generate
the joint configuration that achieves the end-effector position. Store the configurations to use later.

qInitial = q0; % Use home configuration as the initial guess
for i = 1:count
    % Solve for the configuration satisfying the desired end effector
    % position
    point = points(i,:);
    qSol = ik(endEffector,trvec2tform(point),weights,qInitial);
    % Store the configuration
    qs(i,:) = qSol;
    % Start from prior solution
    qInitial = qSol;
end

Animate The Solution

Plot the robot for each frame of the solution using that specific robot configuration. Also, plot the
desired trajectory.
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Show the robot in the first configuration of the trajectory. Adjust the plot to show the 2-D plane that
circle is drawn on. Plot the desired trajectory.

figure
show(robot,qs(1,:)');
view(2)
ax = gca;
ax.Projection = 'orthographic';
hold on
plot(points(:,1),points(:,2),'k')
axis([-0.1 0.7 -0.3 0.5])

Set up a rateControl object to display the robot trajectory at a fixed rate of 15 frames per second.
Show the robot in each configuration from the inverse kinematic solver. Watch as the arm traces the
circular trajectory shown.

framesPerSecond = 15;
r = rateControl(framesPerSecond);
for i = 1:count
    show(robot,qs(i,:)','PreservePlot',false);
    drawnow
    waitfor(r);
end
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See Also
rigidBodyTree | rigidBody | rigidBodyJoint | inverseKinematics

Related Examples
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics” on page 1-193
• “Inverse Kinematics Algorithms” on page 2-10
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Solve Inverse Kinematics for a Four-Bar Linkage
This example shows how to solve inverse kinematics for a four-bar closed-chain linkage. Robotics
System Toolbox™ does not directly support closed-loop mechanisms. However, the loop-closing joints
can be approximated using kinematic constraints. This example shows how to setup a rigid body tree
for a four-bar linkage, specify the kinematic constraints, and solve for a desired end-effector position.

Initialize the four-bar linkage rigid body tree model.

robot = rigidBodyTree('Dataformat','column','MaxNumBodies',7);

Define body names, parent names, joint names, joint types, and fixed transforms in cell arrays. The
fixed transforms define the geometry of the four-bar linkage. The linkage rotates in the xz-plane. An
offset of -0.1 is used in the y-axis on the 'b4' body to isolate the motion of the overlapping joints for
'b3' and 'b4'.

bodyNames = {'b1','b2','b3','b4','b5','b6'};
parentNames = {'base','b1','b2','base','b4','b5'};
jointNames = {'j1','j2','j3','j4','j5','j6'};
jointTypes = {'revolute','revolute','fixed','revolute','revolute','fixed'};
fixedTforms = {eye(4), ...
                trvec2tform([0 0 0.5]), ...
                trvec2tform([0.8 0 0]), ...
                trvec2tform([0.0 -0.1 0]), ...
                trvec2tform([0.8 0 0]), ...
                trvec2tform([0 0 0.5])};

Use a for loop to assemble the four-bar linkage:

• Create a rigid body and specify the joint type.
• Specify the JointAxis property for any non-fixed joints.
• Specify the fixed transformation.
• Add the body to the rigid body tree.

for k = 1:6

    b = rigidBody(bodyNames{k});
    b.Joint = rigidBodyJoint(jointNames{k},jointTypes{k});
    
    if ~strcmp(jointTypes{k},'fixed')
        b.Joint.JointAxis = [0 1 0];
    end
    
    b.Joint.setFixedTransform(fixedTforms{k});
    
    addBody(robot,b,parentNames{k});
end

Add a final body to function as the end-effector (handle) for the four-bar linkage.

bn = 'handle';
b = rigidBody(bn);
setFixedTransform(b.Joint,trvec2tform([0 -0.15 0]));
addBody(robot,b,'b6');

Specify kinematic constraints for the GeneralizedInverseKinematics object:
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• Position constraint 1 : The origins of 'b3' body frame and 'b6' body frame should always
overlap. This keeps the handle in line with the approximated closed-loop mechanism. Use the
-0.1 offset for the y-coordinate.

• Position constraint 2 : End-effector should target the desired position.
• Joint limit bounds : Satisfy the joint limits in the rigid body tree model.

gik = generalizedInverseKinematics('RigidBodyTree',robot);
gik.ConstraintInputs = {'position',...  % Position constraint for closed-loop mechanism
                        'position',...  % Position constraint for end-effector 
                        'joint'};       % Joint limits
gik.SolverParameters.AllowRandomRestart = false;

% Position constraint 1
positionTarget1 = constraintPositionTarget('b6','ReferenceBody','b3');
positionTarget1.TargetPosition = [0 -0.1 0];
positionTarget1.Weights = 50;
positionTarget1.PositionTolerance = 1e-6;

% Joint limit bounds
jointLimBounds = constraintJointBounds(gik.RigidBodyTree);
jointLimBounds.Weights = ones(1,size(gik.RigidBodyTree.homeConfiguration,1))*10;

% Position constraint 2
desiredEEPosition = [0.9 -0.1 0.9]'; % Position is relative to base.
positionTarget2 = constraintPositionTarget('handle');
positionTarget2.TargetPosition = desiredEEPosition; 
positionTarget2.PositionTolerance = 1e-6;
positionTarget2.Weights = 1;

Compute the kinematic solution using the gik object. Specify the initial guess and the different
kinematic constraints in the proper order.

iniGuess = homeConfiguration(robot);
[q, solutionInfo] = gik(iniGuess,positionTarget1,positionTarget2,jointLimBounds);

Examine the results in solutionInfo. Show the kinematic solution compared to the home
configuration. Plots are shown in the xz-plane.

loopClosingViolation = solutionInfo.ConstraintViolations(1).Violation;
jointBndViolation = solutionInfo.ConstraintViolations(2).Violation;
eePositionViolation = solutionInfo.ConstraintViolations(3).Violation;

subplot(1,2,1)
show(robot,homeConfiguration(robot));
title('Home Configuration')
view([0 -1 0]);
subplot(1,2,2)
show(robot,q);
title('GIK Solution')
view([0 -1 0]);
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See Also
Classes
generalizedInverseKinematics | rigidBodyTree | inverseKinematics |
constraintPoseTarget | constraintJointBounds

Related Examples
• “Rigid Body Tree Robot Model” on page 2-2
• “Plan a Reaching Trajectory With Multiple Kinematic Constraints” on page 1-204
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Robot Dynamics

In this section...
“Dynamics Properties” on page 2-21
“Dynamics Equations” on page 2-22

This topic details the different elements, properties, and equations of rigid body robot dynamics.
Robot dynamics are the relationship between the forces acting on a robot and the resulting motion of
the robot. In Robotics System Toolbox, manipulator dynamics information is contained within a
rigidBodyTree object, which specifies the rigid bodies, attachment points, and inertial parameters
for both kinematics and dynamics calculations.

Note To use dynamics object functions, you must set the DataFormat property of the
rigidBodyTree object to "row" or "column". These setting accept inputs and return outputs as
row or column vectors, respectively, for relevant robotics calculations, such as robot configurations or
joint torques.

Dynamics Properties
When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:

The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".
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Dynamics Equations
Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q) − J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q) − J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

See Also
Functions
forwardDynamics | inverseDynamics | externalForce | geometricJacobian |
gravityTorque | centerOfMass | massMatrix | velocityProduct

Objects
rigidBodyTree | jointSpaceMotionModel | taskSpaceMotionModel | inverseKinematics

Related Examples
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics” on page 1-193
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Task-Space Motion Model
The task-space motion model characterizes the closed-loop motion of a manipulator under task-space
control, where the control action is defined in the SE(3) space with respect to the pose of a specified
end effector. This topic covers the variables and equations for computing the behavior of joint
position, velocity, and acceleration given motion modeled in the “Plan and Execute Task- and Joint-
Space Trajectories Using KINOVA Gen3 Manipulator” on page 1-257 object. For joint-space motion
models, see the jointSpaceMotionModel object.

For an example that covers the difference between task-space and joint-space control, see “Plan and
Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page 1-257.

• Key Variables on page 2-0
• Equations of Motion on page 2-0

Key Variables

The model state consists of these values:

• q — Robot joint configuration, as a vector of joint positions. Specified in rad for revolute joints and
m for prismatic joints.

• q̇ — Vector of joint velocities in rad ⋅ s−1 for revolute joints and m ⋅ s−1 for prismatic joints
• q̈ — Vector of joint accelerations in rad ⋅ s−2 for revolute joints or m ⋅ s−2 for prismatic joints

The end-effector pose T(q) of the robot is a 4-by-4 homogeneous matrix defined relative to the origin
at the robot base. Positions are in meters. Two forms of T are used for calculating errors in control:

• Tref  — Reference end-effector pose, specified as a desired end-effector pose

• Tact — Actual end-effector pose achieved by the motion

The end-effector transform decomposes as:

T =
R X
0 1
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where R is the orientation as a 3-by-3 rotation matrix, and X is a 3-by-1 vector of xyz-positions in
meters.

The task-space velocity v and acceleration a consist of two 6-by-1 vectors:

v =
ω
Ẋ

, a =
α
Ẍ

where ω and α are 3-by-1 vectors of angular velocities and accelerations of the frame, respectively.

Equations of Motion

Use the task-space motion model to represent robots that are subject to a control law that acts on the
task-space error. For example, when the input to the control law specifies end-effector motion. While
there are many ways to implement such a system, in this model, the closed-loop response is
approximated in the “Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3
Manipulator” on page 1-257 object by providing a system under proportional-derivative Jacobian-
Transpose style control. Regardless of how the system you are using works, this model can be used as
a low-fidelity approximation of a system under closed-loop task-space control.

Proportional-Derivative Control

When the motion model uses proportional-derivative (PD) control, as determined by the
“MotionType” property of the taskSpaceMotionModel object, the model computes forward
dynamics using standard rigid body dynamics, but with subject to a PD control law that acts on the
error between desired and actual end-effector pose.

• Inputs — This model accepts reference pose Tref  and reference end-effector velocities vref

• Outputs — The model returns the q, q̇, q̈ as the joint configuration, velocities, and accelerations as
vectors

• Complexity — This is a medium complexity motion model. It uses complete rigid body dynamics,
but the control law used in the model is relatively simple.
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In this system, the joint positions, velocities, and accelerations are computed using standard rigid-
body “Robot Dynamics” on page 2-21. The generalized force input Q is given by the PD Control law
on the task-space error, scaled to the joint-space via a Jacobian-Transpose style control:

d
dt

q
q̇

= fdyn(q, q̇, Q, Fext)

Q = J(q)T KPET + KDEv − Bq̇ + G(q)

ET =
erot

etrans

Ev = vref − J(q)q̇

where:

• erot — is the rotational error converted to Euler angles using rotm2eul(RrefRact
T )

• epos — is the error in xyz-coordinates, calculated as Xref − Xact.
• G(q) — are the gravity torques and forces for all joints to maintain their positions in the specified

gravity. For more information, see the gravityTorque function.
• J(q) — is the geometric Jacobian for the given joint configuration for more information, see the

geometricJacobian function.

The control input relies on these user-defined parameters:

• KP — Proportional gain, specified as a 6-by-6 matrix
• KD — Derivative gain, specified as a 6-by-6 matrix
• B — Joint damping vector, specified as a two-element vector of damping constants in N ⋅ s ⋅ rad−1

for revolute joints and N ⋅ s ⋅m−1 for prismatic joints

You can specify these parameters as properties on the “Plan and Execute Task- and Joint-Space
Trajectories Using KINOVA Gen3 Manipulator” on page 1-257 object.

This model accepts the following inputs:

• Tref  — Reference end-effector pose, specified as the desired end-effector pose
•

vref  — Reference end-effector velocities, specified as a vector v =
ω
Ẋ

, with angular velocities ω

and translational velocities Ẋ
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Joint-Space Motion Model
The joint-space motion model characterizes the closed-loop motion of a manipulator under joint-space
control, where the control action is defined in the joint configuration space. Motion models are used
as low-fidelity plant models of robots under closed-loop position control. This topic covers the
variables and equations for computing the behavior of the joint-space position, velocity, and
accelerations relative to reference inputs, as used in the jointSpaceMotionModel object. For task-
space motion models, see the “Plan and Execute Task- and Joint-Space Trajectories Using KINOVA
Gen3 Manipulator” on page 1-257 object.

This topic covers these types of joint-space control:

• Computed Torque Control on page 2-0
• Proportional-Derivative (PD) Control on page 2-0
• Independent Joint Motion on page 2-0

For an example that covers the difference between task-space and joint-space control, see “Plan and
Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” on page 1-257.

State and Controls

The joint-space motion model state consists of these values:

• q — Robot joint configuration, as a vector of joint positions. Specified in rad for revolute joints and
m for prismatic joints.

• q̇ — Vector of joint velocities in rad ⋅ s−1 for revolute joints and m ⋅ s−1 for prismatic joints
• q̈ — Vector of joint accelerations in rad ⋅ s−2 for revolute joints or m ⋅ s−2 for prismatic joints

The joint-space motion model is used when you need a low-fidelity model of your system under
closed-loop control and the inputs are specified as joint configuration, velocity, and acceleration. The
motion model includes three ways to model its overall behavior:

• Computed Torque Control — The rigid-body dynamics are modeled using the standard equations
of motion, but compensating for the full-body dynamics and assigning error dynamics. This is a
higher-fidelity version of independent joint motion control.
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• PD Control — The rigid-body dynamics are modeled using the standard equations of motion with a
joint torque input given by proportional-derivative (PD) control. This model represents a controller
that does not compensate tightly for the overall effects of rigid-body motion.

• Independent Joint Motion — Each joint is modeled independently as a closed-loop second-order
system. This model is a lower fidelity version of computed torque control motion model, and may
be considered a best-case scenario for how closed-loop motion may behave since the dynamics are
simplified and directly prescribed.

To set these different motion types, use the “MotionType” property of the jointSpaceMotionModel
object. These motion types are not exhaustive, but they do provide a set of options to use when
approximating the closed-loop behavior of your system. For details and suggestions on when to use
which model, see the sections below.

Equations of Motion

In this section, the equations of motion for each model are introduced, in order of decreasing
complexity.

Computed Torque Control

With computed torque control, the motion model uses standard rigid body dynamics, but the
generalized force input is given by a control law that compensates for the rigid body dynamics and
instead assigns a second-order error dynamics response.

• Inputs — This model accepts qref , q̇ref , q̈ref  as the desired reference joint configuration, velocities,
and accelerations as vectors. The user may also optional provide the external force Fext, specified
in Newtons.

• Outputs — The model outputs q, q̇, q̈ as the joint configuration, velocities, and accelerations as
vectors. In the MATLAB version of the model, only accelerations are returned, and the user must
choose an integrator or ODE solver to return the other states.

• Complexity — This is high complexity. The motion model uses full rigid body dynamics with
optional external forces, the controller is modeled as part of the closed loop system, and the
controller includes dynamic compensation terms.

• When to apply — Use when the closed-loop system being simulated has approximable error
dynamics, or when it uses a controller that treats the robot as a multi-body system, and external
forces may be present

The resultant closed-loop system aims to achieve the following second error behavior for the i-th
joint:

q∼̈i = − ωn
2q∼i− 2ζωnq∼̇i

q∼i = qi− qi . ref

These parameters characterize the desired response defined for each joint:

• ωn — Natural frequency, specified in Hz (s−1)

• ζ — The damping ratio, which is unitless
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As seen in the diagram, the complete system consists of the standard rigid-body “Robot Dynamics” on
page 2-21 with a control law that enforces closed error dynamics via the generalized force input Q:

d
dt

q
q̇

= fdyn(q, q̇, Q, Fext)

Q = gCTC(q∼, q∼̇, q̈ref , ωn, ζ) = M(q)aq + C(q, q̇)q̇ + G(q)

aq = q̈ref − ωn
2

diagq∼− 2ζωn diagq∼̇

q∼ = q− qref

where,

• M(q) — is a joint-space mass matrix based on the current robot configuration Calculate this matrix
by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity “Gravity”. Calculate the gravity torque by using the gravityTorque object
function.

The control input relies on these user-defined parameters:

• − ωn
2

diag — Diagonal matrix, where the i, i -th element corresponds to the i-th element of the n-
element vector of natural frequencies in the “NaturalFrequency” property of the
jointSpaceMotionModel object are in Hz (s−1).

• − 2ζωn
2

diag — Diagonal matrix, where the i, i -th element corresponds to the i-th element of the
product of the squared natural frequencies vector ωn and the i-th element of the damping ratios
vector ζ, specified in the “DampingRatio” property of the jointSpaceMotionModel object.

Because the dynamics are compensated, in the absence of external force inputs large acceleration/
deceleration, the error dynamics should be achieved. In the absence of external forces, the
independent joint motion type provides a simpler way of achieving this result.
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The values of ωn and ζ may be set directly, or they may be provided using the the
updateErrorDynamicsFromStep method, which computes values for ωn and ζ based on desired
unit step response (defined using it's transient behavior characteristics).

Proportional-Derivative (PD) Control

With PD control, the robot models behavior according to standard rigid body dynamics, but with the
generalized force input Q given by a control law that applies PD control based on the joint error, as
well as gravity compensation.

• Inputs — This model accepts qref , q̇ref  as the desired reference joint configuration, velocities, and
accelerations as vectors. The user may also optional provide the external force Fext, specified in
Newtons.

• Outputs — The model outputs q, q̇, q̈ as the joint configuration, velocities, and accelerations. In the
MATLAB version of the model, only accelerations are returned, and the user must choose an
integrator or ODE solver to return the other states.

• Complexity — This is medium complexity. The motion model uses full rigid body dynamics with
optional external forces and the controller is modeled as part of the closed loop system, but the
controller is relatively simple.

• When to apply — Use when the closed-loop system being simulated uses a controller that treats
joints as independent systems, or when a PD style controller is used, and external forces may be
present.

As with computed torque control, this system behavior uses the standard rigid-body “Robot
Dynamics” on page 2-21, but uses the PD control law define the generalized force input Q:

d
dt

q
q̇

= fdyn(q, q̇, τ, Fext)

Q = gPD(q∼, q∼̇, KP, KD) = − KP(q∼) − KD(q∼̇) + G(q)

q∼ = q− qref
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where

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity “Gravity”. Calculate the gravity torque by using the gravityTorque object
function.

The control input relies on these user-defined parameters:

• KP — Proportional gain, specified as an N-by-N matrix, where N is the number of movable joints of
the manipulator

• KD — Derivative gain, specified as an N-by-N matrix

Independent Joint Motion

When this system is modeled with independent joint motion, instead of modeling the closed loop
system as standard rigid body dynamics plus a control input, each joint is instead modeled as a
second-order system that already has the desired error behavior:

• Inputs — This model accepts qref , q̇ref  as the desired reference joint configuration, velocities, and
accelerations as vectors. There is no external force input.

• Outputs — The model outputs q, q̇, q̈ as the joint configuration, velocities, and accelerations. In the
MATLAB version of the model, only accelerations are returned, and the user must choose an
integrator or ODE solver to return the other states.

• Complexity — This is low complexity. The motion model simply prescribes the error behavior that
a position controller could aim to achieve.

• When to apply — Use when the system has approximable error dynamics and there are no
external force inputs required.

The system models the following closed-loop second order behavior for the ith joint:

d
dt

q∼

q∼̇
= ferr(q∼, q∼̇, ζ, ωn) =

q∼̇

−ωn
2q∼i− 2ζωnq∼̇i

q∼i = qi− qi . ref

These parameters characterize the desired response defined for each joint:

• ωn — the natural frequency specified in units of s−1

• ζ — t the damping ratio, which is unitless
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Or as:

The complete system is therefore modeled as:

d
dt

q
q̇

= f I JM(qref , q̇ref , ζ, ωn) =
0 I

− ωn
2

diag − 2ζωn diag

q
q̇

+
0 I

ωn
2

diag 2ζωn diag

qref

q̇ref

The model relies on these user-defined parameters:

• − ωn
2

diag — Diagonal matrix, where the i, i -th element corresponds to the i-th element of the n-
element vector of natural frequencies in the “NaturalFrequency” property of the
jointSpaceMotionModel object are in Hz (s−1).

• − 2ζωn
2

diag — Diagonal matrix, where the i, i -th element corresponds to the i-th element of the
product of the squared natural frequencies vector ωn and the i-th element of the damping ratios
vector ζ, specified in the “DampingRatio” property of the jointSpaceMotionModel object.

The values of ωn and ζ may be set directly, or they may be provided using the the
updateErrorDynamicsFromStep method, which computes values for ωn and ζ based on desired
unit step response (defined using it's transient behavior characteristics).

The Independent Joint Motion model represents a closed loop system under idealized behavior. In the
absence of external forces, the motion model using computed torque control should produce an
equivalent output.
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Install Robotics System Toolbox Robot Library Data Support
Package

The Robotics System Toolbox Robot Library Data Support Package provides source mesh files to
visualize and simulate robots in the robot library on platforms besides MATLAB and Simulink.

To install the support package.

1 In a MATLAB Command Window, type:

roboticsAddons

The Add-On Explorer starts.
2 Select Robotics System Toolbox Robot Library Data.
3 On the support package page, click the Install button.
4 Alternatively, you can download and install the Robotics System Toolbox Robot Library Data

support package from File Exchange.

To check for updates, repeat this process when a new version of MATLAB is released. You can also
check for updates between releases using this process.

See Also
importrobot

Related Examples
• “Design Position Controlled Manipulator Using Simscape” on page 1-98
• “Perform Trajectory Tracking and Compute Joint Torque for Manipulator Using Simscape” on

page 1-110
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Mobile Robot Kinematics Equations
Learn details about mobile robot kinematics equations including unicycle, bicycle, differential drive,
and Ackermann models. This topic covers the variables and specific equations for each motion model
[1]. For an example that simulates the different mobile robots using these models, see “Simulate
Different Kinematic Models for Mobile Robots” on page 1-67.

Variable Overview

The robot state is represented as a three-element vector: [x y θ].

For a given robot state:

• x: Global vehicle x-position in meters
• y: Global vehicle y-position in meters
• θ: Global vehicle heading in radians

For Ackermann kinematics, the state also includes steering angle:

• ψ: Vehicle steering angle in radians

The unicycle, bicycle, and differential drive models share a genrealized control input, which accepts
the following:

• v: Vehicle speed in meters/s
• ω: Vehicle angular velocity in radians/s

Other variables represented in the kinematics equations are:

• r: Wheel radius in meters
• ϕ̇: Wheel speed in radians/s
• d: Track width in meters
• l: Wheel base in meters
• ψ: Vehicle steering angle in radians

Unicycle Kinematics

The unicycle kinematics equations model a single rolling wheel that pivots about a central axis using
the unicycleKinematics object.
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The unicycle model state is [x y θ].

Variables

• x: Global vehicle x-position in meters
• y: Global vehicle y-position in meters
• θ: Global vehicle heading in radians
• ϕ̇: Wheel speed in meters/s
• r: Wheel radius in meters
• v: Vehicle speed in meters/s
• ω: Vehicle heading angular velocity in radians/s

Kinematic Equations

Depending on the VehicleInputs name-value argument, you can input only wheel speeds or the
vehicle speed and heading rate. This change in input affects the equations.

Wheel Speed Equation

ẋ
ẏ
θ̇

=
rcos(θ) 0
rsin(θ) 0

0 1

ϕ̇
ω

Vehicle Speed and Heading Rate Equation (Generalized)

When the generalized inputs are given as the speed v = rϕ̇ and vehicle heading angular velocity ω,
the equation simplifies to:

ẋ
ẏ
θ̇

=
cos(θ) 0
sin(θ) 0

0 1

v
ω
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Bicycle Kinematics

The bicycle kinematics equations model a car-like vehicle that accepts the front steering angle as a
control input using the bicycleKinematics object.

The bicycle model state is [x y θ].

Variables

• x: Global vehicle x-position in meters
• y: Global vehicle y-position in meters
• θ: Global vehicle heading in radians
• l: Wheel base, in meters
• ψ: Vehicle steering angle in radians
• v: Vehicle speed in meters/s
• ω: Vehicle heading angular velocity in radians/s

Kinematic Equations

Depending on the VehicleInputs name-value argument, you can input the vehicle speed as either
the steering angle or heading rate. This change in input affects the equations.

Steering Angle Equation

ẋ
ẏ
θ̇

=

vcos(θ)
vsin(θ)
v
l tan(ψ)

v
ω

Vehicle Speed and Heading Rate Equation (Generalized)

In this generalized format, the heading rate ω can be related to the steering angle ψ with the relation
ω = v

l tanψ. Then, the ODE simplifies to:
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ẋ
ẏ
θ̇

=
cos(θ) 0
sin(θ) 0

0 1

v
ω

Differential Drive Kinematics

The differential drive kinematics equations model a vehicle where the wheels on the left and right
may spin independently using the differentialDriveKinematics object.

The differential drive model state is [x y θ].

Variables

• x: Global vehicle x-position, in meters
• y: Global vehicle y-position, in meters
• θ: Global vehicle heading, in radians
• ϕ̇L: Left wheel speed in meters/s
• ϕ̇R: Right wheel speed in meters/s
• r: Wheel radius in meters
• d: Track width in meters
• v: Vehicle speed in meters/s
• ω: Vehicle heading angular velocity in radians/s

Kinematic Equations

Depending on the VehicleInputs name-value argument, you can input the wheel speed as either
the steering angle or heading rate. This change in input affects the equations.

Wheel Speed Equation

ẋ
ẏ
θ̇

=

r
2cos(θ) r

2cos(θ)

r
2sin(θ) r

2sin(θ)

−r /2d r /2d

ϕ̇L

ϕ̇R
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Vehicle Speed and Heading Rate Equation (Generalized)

In the generalized format, the inputs are given as the speed v = r
2 ϕ̇R + ϕ̇L  and vehicle heading

angular velocity ω = r
2d ϕ̇R− ϕ̇L . The ODE simplifies to:

ẋ
ẏ
θ̇

=
cos(θ) 0
sin(θ) 0

0 1

v
ω

Ackermann Kinematics

The Ackermann kinematic equations model a car-like vehicle model with an Ackermann-steering
mechanism using the ackermannKinematics object. The equation adjusts the position of the axle
tires based on the track width so that the tires follow concentric circles. Mathematically, this means
that the input has to be the steering heading angular velocity ψ̇, and there is no generalized format.

The differential drive model state is [x y θ ψ].

Variables

• x: Global vehicle x-position in meters
• y: Global vehicle y-position in meters
• θ: Global vehicle heading in radians
• ψ: Vehicle steering angle in radians
• l: Wheel base in meters
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• v: Vehicle speed in meters/s

Kinematic Equations

For the Ackermann kinematics model, the ODE is:

ẋ
ẏ
θ̇
ψ̇

=

cos(θ) 0
sin(θ) 0

tan(ψ)/l 0
0 1

v
ψ̇

References

[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, 2017.

For an example the simulates the different mobile robot using these models, see “Simulate Different
Kinematic Models for Mobile Robots” on page 1-67.
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Occupancy Grids
In this section...
“Overview” on page 2-39
“World, Grid, and Local Coordinates” on page 2-39
“Inflation of Coordinates” on page 2-40

Overview
Occupancy grids are used to represent a robot workspace as a discrete grid. Information about the
environment can be collected from sensors in real time or be loaded from prior knowledge. Laser
range finders, bump sensors, cameras, and depth sensors are commonly used to find obstacles in
your robot’s environment.

Occupancy grids are used in robotics algorithms such as path planning (see mobileRobotPRM or
plannerRRT). They are used in mapping applications for integrating sensor information in a discrete
map, in path planning for finding collision-free paths, and for localizing robots in a known
environment (see monteCarloLocalization or matchScans). You can create maps with different
sizes and resolutions to fit your specific application.

For 3-D occupancy maps, see occupancyMap3D.

For 2-D occupancy grids, there are two representations:

• Binary occupancy grid (see binaryOccupancyMap)
• Probability occupancy grid (see occupancyMap)

A binary occupancy grid uses true values to represent the occupied workspace (obstacles) and
false values to represent the free workspace. This grid shows where obstacles are and whether a
robot can move through that space. Use a binary occupancy grid if memory size is a factor in your
application.

A probability occupancy grid uses probability values to create a more detailed map representation.
This representation is the preferred method for using occupancy grids. This grid is commonly
referred to as simply an occupancy grid. Each cell in the occupancy grid has a value representing the
probability of the occupancy of that cell. Values close to 1 represent a high certainty that the cell
contains an obstacle. Values close to 0 represent certainty that the cell is not occupied and obstacle
free. The probabilistic values can give better fidelity of objects and improve performance of certain
algorithm applications.

Binary and probability occupancy grids share several properties and algorithm details. Grid and
world coordinates apply to both types of occupancy grids. The inflation function also applies to both
grids, but each grid implements it differently. The effects of the log-odds representation and
probability saturation apply to probability occupancy grids only.

World, Grid, and Local Coordinates
When working with occupancy grids in MATLAB, you can use either world, local, or grid coordinates.

The absolute reference frame in which the robot operates is referred to as the world frame in the
occupancy grid. Most operations are performed in the world frame, and it is the default selection
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when using MATLAB functions in this toolbox. World coordinates are used as an absolute coordinate
frame with a fixed origin, and points can be specified with any resolution. However, all locations are
converted to grid locations because of data storage and resolution limits on the map itself.

The local frame refers to the egocentric frame for a vehicle navigating the map. The
GridOriginInLocal and LocalOriginInWorld properties define the origin of the grid in local
coordinates and the relative location of the local frame in the world coordinates. You can adjust this
local frame using the move function. For an example using the local frame as an egocentric map to
emulate a vehicle moving around and sending local obstacles, see “Create Egocentric Occupancy
Maps Using Range Sensors” (Navigation Toolbox).

Grid coordinates define the actual resolution of the occupancy grid and the finite locations of
obstacles. The origin of grid coordinates is in the top-left corner of the grid, with the first location
having an index of (1,1). However, the GridLocationInWorld property of the occupancy grid in
MATLAB defines the bottom-left corner of the grid in world coordinates. When creating an occupancy
grid object, properties such as XWorldLimits and YWorldLimits are defined by the input width,
height, and resolution. This figure shows a visual representation of these properties and the
relation between world and grid coordinates.

Inflation of Coordinates
Both the binary and normal occupancy grids have an option for inflating obstacles. This inflation is
used to add a factor of safety on obstacles and create buffer zones between the robot and obstacle in
the environment. The inflate function of an occupancy grid object converts the specified radius to
the number of cells rounded up from the resolution*radius value. Each algorithm uses this cell
value separately to modify values around obstacles.
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Binary Occupancy Grid

The inflate function takes each occupied cell and directly inflates it by adding occupied space
around each point. This basic inflation example illustrates how the radius value is used.

Inflate Obstacles in a Binary Occupancy Grid

This example shows how to create the map, set the obstacle locations and inflate it by a radius of 1m.
Extra plots on the figure help illustrate the inflation and shifting due to conversion to grid locations.

Create binary occupancy grid. Set occupancy of position [5,5].

map = binaryOccupancyMap(10,10,5);
setOccupancy(map,[5 5], 1);

Inflate occupied spaces on map by 1m.

inflate(map,1);
show(map)

Plot original location, converted grid position and draw the original circle. You can see from this plot,
that the grid center is [4.9 4.9], which is shifted from the [5 5] location. A 1m circle is drawn from
there and notice that any cells that touch this circle are marked as occupied. The figure is zoomed in
to the relevant area.

hold on
theta = linspace(0,2*pi);
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x = 4.9+cos(theta); % x circle coordinates
y = 4.9+sin(theta); % y circle coordinates
plot(5,5,'*b','MarkerSize',10) % Original location
plot(4.9,4.9,'xr','MarkerSize',10) % Grid location center
plot(x,y,'-r','LineWidth',2); % Circle of radius 1m.
axis([3.6 6 3.6 6])
ax = gca;
ax.XTick = [3.6:0.2:6];
ax.YTick = [3.6:0.2:6];
grid on
legend('Original Location','Grid Center','Inflation')

As you can see from the above figure, even cells that barely overlap with the inflation radius are
labeled as occupied.

See Also
binaryOccupancyMap | occupancyMap | occupancyMap3D

Related Examples
• “Create Egocentric Occupancy Maps Using Range Sensors” (Navigation Toolbox)
• “Build Occupancy Map from Lidar Scans and Poses” (Navigation Toolbox)
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Probabilistic Roadmaps (PRM)
In this section...
“Tune the Number of Nodes” on page 2-43
“Tune the Connection Distance” on page 2-47
“Create or Update PRM” on page 2-49

A probabilistic roadmap (PRM) is a network graph of possible paths in a given map based on free and
occupied spaces. The mobileRobotPRM object randomly generates nodes and creates connections
between these nodes based on the PRM algorithm parameters. Nodes are connected based on the
obstacle locations specified in Map, and on the specified ConnectionDistance. You can customize
the number of nodes, NumNodes, to fit the complexity of the map and the desire to find the most
efficient path. The PRM algorithm uses the network of connected nodes to find an obstacle-free path
from a start to an end location. To plan a path through an environment effectively, tune the NumNodes
and ConnectionDistance properties.

When creating or updating the mobileRobotPRM class, the node locations are randomly generated,
which can affect your final path between multiple iterations. This selection of nodes occurs when you
specify Map initially, change the parameters, or update is called. To get consistent results with the
same node placement, use rng to save the state of the random number generation. See “Tune the
Connection Distance” on page 2-47 for an example using rng.

Tune the Number of Nodes
Use the NumNodes property on the mobileRobotPRM object to tune the algorithm. NumNodes
specifies the number of points, or nodes, placed on the map, which the algorithm uses to generate a
roadmap. Using the ConnectionDistance property as a threshold for distance, the algorithm
connects all points that do not have obstacles blocking the direct path between them.

Increasing the number of nodes can increase the efficiency of the path by giving more feasible paths.
However, the increased complexity increases computation time. To get good coverage of the map, you
might need a large number of nodes. Due to the random placement of nodes, some areas of the map
may not have enough nodes to connect to the rest of the map. In this example, you create a large and
small number of nodes in a roadmap.

Load a map file as a logical matrix, simpleMaps, and create an occupancy grid.

load exampleMaps.mat
map = binaryOccupancyMap(simpleMap,2);

Create a simple roadmap with 50 nodes.

prmSimple = mobileRobotPRM(map,50);
show(prmSimple)
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Create a dense roadmap with 250 nodes.

prmComplex = mobileRobotPRM(map,250);
show(prmComplex)
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The additional nodes increase the complexity but yield more options to improve the path. Given these
two maps, you can calculate a path using the PRM algorithm and see the effects.

Calculate a simple path.

startLocation = [2 1];
endLocation = [12 10];
path = findpath(prmSimple,startLocation,endLocation);
show(prmSimple)
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Calculate a complex path.

path = findpath(prmComplex, startLocation, endLocation);
show(prmComplex)
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Increasing the nodes allows for a more direct path, but adds more computation time to finding a
feasible path. Because of the random placement of points, the path is not always more direct or
efficient. Using a small number of nodes can make paths worse than depicted and even restrict the
ability to find a complete path.

Tune the Connection Distance
Use the ConnectionDistance property on the PRM object to tune the algorithm.
ConnectionDistance is an upper threshold for points that are connected in the roadmap. Each
node is connected to all nodes within this connection distance that do not have obstacles between
them. By lowering the connection distance, you can limit the number of connections to reduce the
computation time and simplify the map. However, a lowered distance limits the number of available
paths from which to find a complete obstacle-free path. When working with simple maps, you can use
a higher connection distance with a small number of nodes to increase efficiency. For complex maps
with lots of obstacles, a higher number of nodes with a lowered connection distance increases the
chance of finding a solution.

Load a map as a logical matrix, simpleMap, and create an occupancy grid.

load exampleMaps.mat
map = binaryOccupancyMap(simpleMap,2);

Create a roadmap with 100 nodes and calculate the path. The default ConnectionDistance is set to
inf. Save the random number generation settings using the rng function. The saved settings enable
you to reproduce the same points and see the effect of changing ConnectionDistance.
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rngState = rng;
prm = mobileRobotPRM(map,100);
startLocation = [2 1];
endLocation = [12 10];
path = findpath(prm,startLocation,endLocation);
show(prm)

Reload the random number generation settings to have PRM use the same nodes. Lower
ConnectionDistance to 2 m. Show the calculated path.

rng(rngState);
prm.ConnectionDistance = 2;
path = findpath(prm,startLocation,endLocation);
show(prm)
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Create or Update PRM
When using the mobileRobotPRM object and modifying properties, with each new function call, the
object triggers the roadmap points and connections to be recalculated. Because recalculating the
map can be computationally intensive, you can reuse the same roadmap by calling findpath with
different starting and ending locations.

Load the map, simpleMap, from a .mat file as a logical matrix and create an occupancy grid.

load('exampleMaps.mat')
map = binaryOccupancyMap(simpleMap,2);

Create a roadmap. Your nodes and connections might look different due to the random placement of
nodes.

prm = mobileRobotPRM(map,100);
show(prm)
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Call update or change a parameter to update the nodes and connections.

update(prm)
show(prm)
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The PRM algorithm recalculates the node placement and generates a new network of nodes.

References
[1] Kavraki, L.E., P. Svestka, J.-C. Latombe, and M.H. Overmars. "Probabilistic roadmaps for path

planning in high-dimensional configuration spaces," IEEE Transactions on Robotics and
Automation. Vol. 12, No. 4, Aug 1996 pp. 566—580.

See Also
mobileRobotPRM | findpath
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Pure Pursuit Controller
In this section...
“Reference Coordinate System” on page 2-52
“Look Ahead Distance” on page 2-52
“Limitations” on page 2-53

Pure pursuit is a path tracking algorithm. It computes the angular velocity command that moves the
robot from its current position to reach some look-ahead point in front of the robot. The linear
velocity is assumed constant, hence you can change the linear velocity of the robot at any point. The
algorithm then moves the look-ahead point on the path based on the current position of the robot
until the last point of the path. You can think of this as the robot constantly chasing a point in front of
it. The property LookAheadDistance decides how far the look-ahead point is placed.

The controllerPurePursuit object is not a traditional controller, but acts as a tracking algorithm
for path following purposes. Your controller is unique to a specified a list of waypoints. The desired
linear and maximum angular velocities can be specified. These properties are determined based on
the vehicle specifications. Given the pose (position and orientation) of the vehicle as an input, the
object can be used to calculate the linear and angular velocities commands for the robot. How the
robot uses these commands is dependent on the system you are using, so consider how robots can
execute a motion given these commands. The final important property is the LookAheadDistance,
which tells the robot how far along on the path to track towards. This property is explained in more
detail in a section below.

Reference Coordinate System
It is important to understand the reference coordinate frame used by the pure pursuit algorithm for
its inputs and outputs. The figure below shows the reference coordinate system. The input waypoints
are [x y] coordinates, which are used to compute the robot velocity commands. The robot’s pose is
input as a pose and orientation (theta) list of points as [x y theta]. The positive x and y directions
are in the right and up directions respectively (blue in figure). The theta value is the angular
orientation of the robot measured counterclockwise in radians from the x-axis (robot currently at 0
radians).

Look Ahead Distance
The LookAheadDistance property is the main tuning property for the controller. The look ahead
distance is how far along the path the robot should look from the current location to compute the
angular velocity commands. The figure below shows the robot and the look-ahead point. As displayed
in this image, note that the actual path does not match the direct line between waypoints.
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The effect of changing this parameter can change how your robot tracks the path and there are two
major goals: regaining the path and maintaining the path. In order to quickly regain the path between
waypoints, a small LookAheadDistance will cause your robot to move quickly towards the path.
However, as can be seen in the figure below, the robot overshoots the path and oscillates along the
desired path. In order to reduce the oscillations along the path, a larger look ahead distance can be
chosen, however, it might result in larger curvatures near the corners.

The LookAheadDistance property should be tuned for your application and robot system. Different
linear and angular velocities will affect this response as well and should be considered for the path
following controller.

Limitations
There are a few limitations to note about this pure pursuit algorithm:

• As shown above, the controller cannot exactly follow direct paths between waypoints. Parameters
must be tuned to optimize the performance and to converge to the path over time.

• This pure pursuit algorithm does not stabilize the robot at a point. In your application, a distance
threshold for a goal location should be applied to stop the robot near the desired goal.

References
[1] Coulter, R. Implementation of the Pure Pursuit Path Tracking Algorithm. Carnegie Mellon

University, Pittsburgh, Pennsylvania, Jan 1990.

See Also
stateEstimatorPF | controllerVFH
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Particle Filter Parameters
In this section...
“Number of Particles” on page 2-54
“Initial Particle Location” on page 2-55
“State Transition Function” on page 2-56
“Measurement Likelihood Function” on page 2-57
“Resampling Policy” on page 2-57
“State Estimation Method” on page 2-58

To use the stateEstimatorPF particle filter, you must specify parameters such as the number of
particles, the initial particle location, and the state estimation method. Also, if you have a specific
motion and sensor model, you specify these parameters in the state transition function and
measurement likelihood function, respectively. The details of these parameters are detailed on this
page. For more information on the particle filter workflow, see “Particle Filter Workflow” on page 2-
59.

Number of Particles
To specify the number of particles, use the initialize method. Each particle is a hypothesis of the
current state. The particles are distributed across your state space based on either a specified mean
and covariance, or on the specified state bounds. Depending on the StateEstimationMethod
property, either the particle with the highest weight or the mean of all particles is taken to determine
the best state estimate.

The default number of particles is 1000. Unless performance is an issue, do not use fewer than 1000
particles. A higher number of particles can improve the estimate but sacrifices performance speed,
because the algorithm has to process more particles. Tuning the number of particles is the best way
to affect your particle filters performance.

These results, which are based on the stateEstimatorPF example, show the difference in tracking
accuracy when using 100 particles and 5000 particles.
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Initial Particle Location
When you initialize your particle filter, you can specify the initial location of the particles using:

• Mean and covariance
• State bounds

Your initial state is defined as a mean with a covariance relative to your system. This mean and
covariance correlate to the initial location and uncertainty of your system. The stateEstimatorPF
object distributes particles based on your covariance around the given mean. The algorithm uses this
distribution of particles to get the best estimation of state, so an accurate initialization of particles
helps to converge to the best state estimation quickly.

If an initial state is unknown, you can evenly distribute your particles across a given state bounds.
The state bounds are the limits of your state. For example, when estimating the position of a robot,
the state bounds are limited to the environment that the robot can actually inhabit. In general, an
even distribution of particles is a less efficient way to initialize particles to improve the speed of
convergence.

The plot shows how the mean and covariance specification can cluster particles much more
effectively in a space rather than specifying the full state bounds.

 Particle Filter Parameters

2-55



State Transition Function
The state transition function, StateTransitionFcn, of a particle filter helps to evolve the particles
to the next state. It is used during the prediction step of the “Particle Filter Workflow” on page 2-59.
In the stateEstimatorPF object, the state transition function is specified as a callback function that
takes the previous particles, and any other necessary parameters, and outputs the predicted location.
The function header syntax is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

By default, the state transition function assumes a Gaussian motion model with constant velocities.
The function uses a Gaussian distribution to determine the position of the particles in the next time
step.

For your application, it is important to have a state transition function that accurately describes how
you expect the system to behave. To accurately evolve all the particles, you must develop and
implement a motion model for your system. If particles are not distributed around the next state, the
stateEstimatorPF object does not find an accurate estimate. Therefore, it is important to
understand how your system can behave so that you can track it accurately.

You also must specify system noise in StateTransitionFcn. Without random noise applied to the
predicted system, the particle filter does not function as intended.

Although you can predict many systems based on their previous state, sometimes the system can
include extra information. The use of varargin in the function enables you to input any extra
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parameters that are relevant for predicting the next state. When you call predict, you can include
these parameters using:

predict(pf,param1,param2)

Because these parameters match the state transition function you defined, calling predict
essentially calls the function as:

predictParticles = stateTransitionFcn(pf,prevParticles,param1,param2)

The output particles, predictParticles, are then either used by the “Measurement Likelihood
Function” on page 2-57 to correct the particles, or used in the next prediction step if correction is
not required.

Measurement Likelihood Function
After predicting the next state, you can use measurements from sensors to correct your predicted
state. By specifying a MeasurementLikelihoodFcn in the stateEstimatorPF object, you can
correct your predicted particles using the correct function. This measurement likelihood function,
by definition, gives a weight for the state hypotheses (your particles) based on a given measurement.
Essentially, it gives you the likelihood that the observed measurement actually matches what each
particle observes. This likelihood is used as a weight on the predicted particles to help with
correcting them and getting the best estimation. Although the prediction step can prove accurate for
a small number of intermediate steps, to get accurate tracking, use sensor observations to correct the
particles frequently.

The specification of the MeasurementLikelihoodFcn is similar to the StateTransitionFcn. It is
specified as a function handle in the properties of the stateEstimatorPF object. The function
header syntax is:

function likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,varargin)

The output is the likelihood of each predicted particle based on the measurement given. However, you
can also specify more parameters in varargin. The use of varargin in the function enables you to
input any extra parameters that are relevant for correcting the predicted state. When you call
correct, you can include these parameters using:

correct(pf,measurement,param1,param2)

These parameters match the measurement likelihood function you defined:

likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,param1,param2)

The correct function uses the likelihood output for particle resampling and giving the final state
estimate.

Resampling Policy
The resampling of particles is a vital step for continuous tracking of objects. It enables you to select
particles based on the current state, instead of using the particle distribution given at initialization.
By continuously resampling the particles around the current estimate, you can get more accurate
tracking and improve long-term performance.

When you call correct, the particles used for state estimation can be resampled depending on the
ResamplingPolicy property specified in the stateEstimatorPF object. This property is specified

 Particle Filter Parameters

2-57



as a resamplingPolicyPFresamplingPolicyPF object. The TriggerMethod property on that
object tells the particle filter which method to use for resampling.

You can trigger resampling at either a fixed interval or when a minimum effective particle ratio is
reached. The fixed interval method resamples at a set number of iterations, which is specified in the
SamplingInterval property. The minimum effective particle ratio is a measure of how well the
current set of particles approximates the posterior distribution. The number of effective particles is
calculated by:

In this equation, N is the number of particles, and w is the normalized weight of each particle. The
effective particle ratio is then Neff / NumParticles. Therefore, the effective particle ratio is a
function of the weights of all the particles. After the weights of the particles reach a low enough
value, they are not contributing to the state estimation. This low value triggers resampling, so the
particles are closer to the current state estimation and have higher weights.

State Estimation Method
The final step of the particle filter workflow is the selection of a single state estimate. The particles
and their weights sampled across the distribution are used to give the best estimation of the actual
state. However, you can use the particles information to get a single state estimate in multiple ways.
With the stateEstimatorPF object, you can either choose the best estimate based on the particle
with the highest weight or take a mean of all the particles. Specify the estimation method in the
StateEstimationMethod property as either 'mean'(default) or 'maxweight'.

Because you can estimate the state from all of the particles in many ways, you can also extract each
particle and its weight from the stateEstimatorPF using the Particles property.

See Also
stateEstimatorPF | resamplingPolicyPF

Related Examples
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Workflow” on page 2-59
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Particle Filter Workflow
A particle filter is a recursive, Bayesian state estimator that uses discrete particles to approximate
the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two steps:

• Prediction – The algorithm uses the previous state to predict the current state based on a given
system model.

• Correction – The algorithm uses the current sensor measurement to correct the state estimate.

The algorithm also periodically redistributes, or resamples, the particles in the state space to match
the posterior distribution of the estimated state.

The estimated state consists of all the state variables. Each particle represents a discrete state
hypothesis. The set of all particles is used to help determine the final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and measurement
noise can follow arbitrary non-Gaussian distributions.

To use the particle filter properly, you must specify parameters such as the number of particles, the
initial particle location, and the state estimation method. Also, if you have a specific motion and
sensor model, you specify these parameters in the state transition function and measurement
likelihood function, respectively. For more information, see “Particle Filter Parameters” on page 2-54.

Follow this basic workflow to create and use a particle filter. This page details the estimation
workflow and shows an example of how to run a particle filter in a loop to continuously estimate
state.

Estimation Workflow
When using a particle filter, there is a required set of steps to create the particle filter and estimate
state. The prediction and correction steps are the main iteration steps for continuously estimating
state.
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Create Particle Filter

Create a stateEstimatorPF object.

Set Parameters of Nonlinear System

Modify these stateEstimatorPF parameters to fit for your specific system or application:

• StateTransitionFcn
• MeasurementLikelihoodFcn
• ResamplingPolicy
• ResamplingMethod
• StateEstimationMethod

Default values for these parameters are given for basic operation.

The StateTransitionFcn and MeasurementLikelihoodFcn functions define the system behavior
and measurement integration. They are vital for the particle filter to track accurately. For more
information, see “Particle Filter Parameters” on page 2-54.

Initialize Particles

Use the initialize function to set the number of particles and the initial state.

Sample Particles from a Distribution

You can sample the initial particle locations in two ways:

• Initial pose and covariance — If you have an idea of your initial state, it is recommended you
specify the initial pose and covariance. This specification helps to cluster particles closer to your
estimate so tracking is more effective from the start.

• State bounds — If you do not know your initial state, you can specify the possible limits of each
state variable. Particles are uniformly distributed across the state bounds for each variable.
Widely distributed particles are not as effective at tracking, because fewer particles are near the
actual state. Using state bounds usually requires more particles, computation time, and iterations
to converge to the actual state estimate.

Predict

Based on a specified state transition function, particles evolve to estimate the next state. Use
predict to execute the state transition function specified in the StateTransitionFcn property.

Get Measurement

The measurements collected from sensors are used in the next step to correct the current predicted
state.

Correct

Measurements are then used to adjust the predicted state and correct the estimate. Specify your
measurements using the correct function. correct uses the MeasurementLikelihoodFcn to
calculate the likelihood of sensor measurements for each particle. Resampling of particles is required
to update your estimation as the state changes in subsequent iterations. This step triggers
resampling based on the ResamplingMethod and ResamplingPolicy properties.

 Particle Filter Workflow

2-61



Extract Best State Estimation

After calling correct, the best state estimate is automatically extracted based on the Weights of
each particle and the StateEstimationMethod property specified in the object. The best estimated
state and covariance is output by the correct function.

Resample Particles

This step is not separately called, but is executed when you call correct. Once your state has
changed enough, resample your particles based on the newest estimate. The correct method checks
the ResamplingPolicy for the triggering of particle resampling according to the current
distribution of particles and their weights. If resampling is not triggered, the same particles are used
for the next estimation. If your state does not vary by much or if your time step is low, you can call the
predict and correct methods without resampling.

Continuously Predict and Correct

Repeat the previous prediction and correction steps as needed for estimating state. The correction
step determines if resampling of the particles is required. Multiple calls for predict or correct
might be required when:

• No measurement is available but control inputs and time updates are occur at a high frequency.
Use the predict method to evolve the particles to get the updated predicted state more often.

• Multiple measurement reading are available. Use correct to integrate multiple readings from
the same or multiple sensors. The function corrects the state based on each set of information
collected.

See Also
stateEstimatorPF | initialize | getStateEstimate | predict | correct

Related Examples
• “Track a Car-Like Robot Using Particle Filter” on page 1-61
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Parameters” on page 2-54
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Gazebo Simulation for Robotics System Toolbox
Robotics System Toolbox provides a co-simulation framework that enables you to use robotics
algorithms in MATLAB and Simulink and visualize their performance in a virtual simulation
environment. This environment uses the Gazebo Simulator. For more details on the simulation
environment, see “How Gazebo Simulation for Robotics System Toolbox Works” on page 2-68.

This simulation tool is commonly used to supplement real data when developing, testing, and
verifying the performance of robotics algorithms.

Gazebo Co-Simulation Blocks
The Robotics System Toolbox > Gazebo Co-Simulation block library contains Simulink blocks
related to the simulation environment. To view the library, at the MATLAB command prompt, enter
robotgazebolib.

Block Description
Gazebo Apply Command Send command to Gazebo simulator
Gazebo Blank Message Create blank Gazebo command
Gazebo Pacer Settings for synchronized stepping between

Gazebo and Simulink
Gazebo Read Receive messages from Gazebo server
Gazebo Publish Send custom messages to Gazebo server
Gazebo Subscribe Receive custom messages from Gazebo server

 Gazebo Simulation for Robotics System Toolbox

2-63



Block Description
Gazebo Select Entity Select a Gazebo entity

Gazebo Co-Simulation Functions
These are the MATLAB functions related to the simulation environment.

Function Description
gzinit Initialize connection settings for Gazebo Co-

Simulation MATLAB interface
gzjoint Assign and retrieve Gazebo model joint

information
gzlink Assign and retrieve Gazebo model link

information
gzmodel Assign and retrieve Gazebo model information
gzworld Interact with Gazebo world
gazebogenmsg Generate dependencies for Gazebo custom

message support
packageGazeboPlugin Create Gazebo plugin package for Simulink

See Also

Related Examples
• “How Gazebo Simulation for Robotics System Toolbox Works” on page 2-68
• “Gazebo Simulation Environment Requirements and Limitations” on page 2-65
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Gazebo Simulation Environment Requirements and Limitations
Robotics System Toolbox provides an interface for a simulation environment visualized using the
Gazebo Simulator. Gazebo enables you to test and experiment using robots in realistically simulated
physical scenarios with high quality graphics.

Gazebo runs on Linux® machines or Linux virtual machines, and uses a plugin package to
communicate with MATLAB and Simulink. When simulating in Gazebo, the requirements and
limitations in mind.

Run Gazebo Simulator on Linux Virtual Machine
Download and install the virtual machine (VM) from Virtual Machine with ROS and Gazebo. In the
VM, the required Gazebo plugin is located in the /home/user/src/GazeboPlugin folder. The VM
contains these software and has these hardware requirements.

Software Included in VM

• Operating System — Ubuntu® Ubuntu 20.04.3 LTS (Focal Fossa)
• Software packages — CMake 3.16.3, Gazebo 11, and the Gazebo plugin

Minimum Hardware Requirements

• Processor (CPU) — Quad core Intel® i5, or equivalent
• Memory (RAM) — 4 GB or more
• Graphics card (GPU) — Dedicated GPU with 1 GB or more graphics memory
• Disk space — At least 20 GB free disk space

Install and Run Gazebo Simulator on Linux Machine
You can also install and run the Gazebo Simulator on a Linux machine.

Software Requirements

• Operating System — Ubuntu 16.04 LTS (Xenial Xerus) or Ubuntu 18.04 LTS (Bionic Beaver) or
Ubuntu 20.04 LTS (Focal Fossa)

• Software packages — CMake 2.8 or later, Gazebo 9 or Gazebo 10 or Gazebo 11, and the Gazebo
plugin

Minimum Hardware Requirements

• Processor (CPU) — Quad core Intel i5, or equivalent
• Memory (RAM) — 4 GB or more
• Graphics card (GPU) — Dedicated GPU with 1 GB or more graphics memory
• Disk space — At least 500 MB free disk space

Gazebo Simulator Installation

Install the CMake and Gazebo packages on Ubuntu by running these commands at the Linux
terminal. For more information on installing Gazebo on Ubuntu machine, see Install Gazebo using
Ubuntu packages.
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sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt-get install cmake gazebo11 libgazebo11-dev

Note Gazebo co-simulation framework supports Gazebo 9, Gazebo 10, and Gazebo 11.

Gazebo Plugin Installation

1 Create a Gazebo plugin package on the host computer in MATLAB by using the
packageGazeboPlugin function. This function creates a folder called GazeboPlugin in your
current working directory and compresses it into a GazeboPlugin.zip file.

packageGazeboPlugin

2 Copy GazeboPlugin.zip to the home directory of your Linux machine.
3 Create a directory, src, and unzip the plugin package to that directory.

mkdir src
unzip GazeboPlugin.zip -d ~/src/

4 Change the directory to the uncompressed GazeboPlugin folder.

cd ~/src/GazeboPlugin/

5 Run these commands in the Linux terminal to compile and install the plugin.

mkdir build
cd build
cmake ..
make

6 Optionally, you can remove the generated plugin from the host computer using MATLAB.

if exist("GazeboPlugin","dir")
    rmdir("GazeboPlugin","s");
end

if exist("GazeboPlugin.zip","file")
    delete("GazeboPlugin.zip");
end

Limitations
MATLAB

• Code generation is not supported.
• Communication between MATLAB and the Gazebo Simulator is asynchronous.

Simulink

• Code generation is not supported.
• Rapid accelerator mode is not supported.
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See Also

Related Examples
• “Gazebo Simulation for Robotics System Toolbox” on page 2-63
• “How Gazebo Simulation for Robotics System Toolbox Works” on page 2-68

External Websites
• Gazebo
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How Gazebo Simulation for Robotics System Toolbox Works
Robotics System Toolbox provides a co-simulation framework that enables you to use robotics
algorithms in MATLAB and Simulink and visualize their performance in a virtual simulation
environment. This environment uses the Gazebo Simulator.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3-D Simulation Environment
When you use Robotics System Toolbox to run your algorithms, MATLAB or Simulink co-simulates the
algorithms in the simulation environment.

On the host computer, Simulink or MATLAB sends actuation data and set commands to the Gazebo
Co-Simulation Plugin on the target Linux machine. The plugin passes this information to the Gazebo
Simulator, which returns sensor data and model information through the plugin to Simulink or
MATLAB on the host computer.

The diagram summarizes the communication between MATLAB or Simulink and the simulation
environment.

Time Synchronization
During co-simulation, you can pause Simulink and the Gazebo Simulator at any time using Pause.
Gazebo pauses one time step ahead of the simulation.

The gap is due to the co-simulation time sequence:

Sensor data and actuation commands are exchanged at the correct time step. The execution steps
Gazebo first, then Simulink. When paused, simulation execution is still at the time step executed by
Gazebo, but Simulink remains on the previous step time until you resume the model.
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See Also

Related Examples
• “Gazebo Simulation for Robotics System Toolbox” on page 2-63
• “Gazebo Simulation Environment Requirements and Limitations” on page 2-65
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Standard Units for Robotics System Toolbox
Robotics System Toolbox uses a fixed set of standards for units to ensure consistency across
algorithms and applications. Unless specified otherwise, functions and classes in this toolbox
represent all values in units based on the International System of Units (SI). The table below
summarizes the relevant quantities and their SI derived units.

Quantity Unit (abbrev.)
Length meter (m)
Time second (s)
Angle radian (rad)
Velocity meter/second (m/s)
Angular Velocity radian/second (rad/s)
Acceleration meter/second2 (m/s2)
Angular Acceleration radian/second2 (rad/s2)
Mass kilogram (kg)
Force Newton (N)
Torque Newton-meter (N-m)
Moment of Inertia kilogram-meter2 (kg-m2)

See Also

More About
• “Coordinate Transformations in Robotics” on page 2-71
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Coordinate Transformations in Robotics
In this section...
“Axis-Angle” on page 2-71
“Euler Angles” on page 2-71
“Homogeneous Transformation Matrix” on page 2-72
“Quaternion” on page 2-72
“Rotation Matrix” on page 2-72
“Translation Vector” on page 2-73
“Conversion Functions and Transformations” on page 2-73

In robotics applications, many different coordinate systems can be used to define where robots,
sensors, and other objects are located. In general, the location of an object in 3-D space can be
specified by position and orientation values. There are multiple possible representations for these
values, some of which are specific to certain applications. Translation and rotation are alternative
terms for position and orientation. Robotics System Toolbox supports representations that are
commonly used in robotics and allows you to convert between them. You can transform between
coordinate systems when you apply these representations to 3-D points. These supported
representations are detailed below with brief explanations of their usage and numeric equivalent in
MATLAB. Each representation has an abbreviation for its name. This is used in the naming of
arguments and conversion functions that are supported in this toolbox.

At the end of this section, you can find out about the conversion functions that we offer to convert
between these representations.

Robotics System Toolbox assumes that positions and orientations are defined in a right-handed
Cartesian coordinate system.

Axis-Angle
Abbreviation: axang

A rotation in 3-D space described by a scalar rotation around a fixed axis defined by a vector.

Numeric Representation: 1-by-3 unit vector and a scalar angle combined as a 1-by-4 vector

For example, a rotation of pi/2 radians around the y-axis would be:

axang = [0 1 0 pi/2]

Euler Angles
Abbreviation: eul

Euler angles are three angles that describe the orientation of a rigid body. Each angle is a scalar
rotation around a given coordinate frame axis. The Robotics System Toolbox supports two rotation
orders. The 'ZYZ' axis order is commonly used for robotics applications. We also support the 'ZYX'
axis order which is also denoted as “Roll Pitch Yaw (rpy).” Knowing which axis order you use is
important for apply the rotation to points and in converting to other representations.

 Coordinate Transformations in Robotics

2-71



Numeric Representation: 1-by-3 vector of scalar angles

For example, a rotation around the y -axis of pi would be expressed as:

eul = [0 pi 0]

Note: The axis order is not stored in the transformation, so you must be aware of what rotation order
is to be applied.

Homogeneous Transformation Matrix
Abbreviation: tform

A homogeneous transformation matrix combines a translation and rotation into one matrix.

Numeric Representation: 4-by-4 matrix

For example, a rotation of angle α around the y -axis and a translation of 4 units along the y -axis
would be expressed as:

tform =
 cos α  0      sin α  0 
 0      1      0      4
-sin α  0      cos α  0
 0      0      0      1

You should pre-multiply your transformation matrix with your homogeneous coordinates, which are
represented as a matrix of row vectors (n-by-4 matrix of points). Utilize the transpose (') to rotate
your points for matrix multiplication. For example:

points = rand(100,4);
tformPoints = (tform*points')';

Quaternion
Abbreviation: quat

A quaternion is a four-element vector with a scalar rotation and 3-element vector. Quaternions are
advantageous because they avoid singularity issues that are inherent in other representations. The
first element, w, is a scalar to normalize the vector with the three other values, [x y z] defining the
axis of rotation.

Numeric Representation: 1-by-4 vector

For example, a rotation of pi/2 around the y -axis would be expressed as:

quat = [0.7071 0 0.7071 0]

Rotation Matrix
Abbreviation: rotm

A rotation matrix describes a rotation in 3-D space. It is a square, orthonormal matrix with a
determinant of 1.
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Numeric Representation: 3-by-3 matrix

For example, a rotation of α degrees around the x-axis would be:

rotm =

     1     0         0
     0     cos α     -sin α
     0     sin α     cos α

You should pre-multiply your rotation matrix with your coordinates, which are represented as a
matrix of row vectors (n-by-3 matrix of points). Utilize the transpose (') to rotate your points for
matrix multiplication. For example:

points = rand(100,3);
rotPoints = (rotm*points')';

Translation Vector
Abbreviation: trvec

A translation vector is represented in 3-D Euclidean space as Cartesian coordinates. It only involves
coordinate translation applied equally to all points. There is no rotation involved.

Numeric Representation: 1-by-3 vector

For example, a translation by 3 units along the x -axis and 2.5 units along the z -axis would be
expressed as:

trvec = [3 0 2.5]

Conversion Functions and Transformations
Robotics System Toolbox provides conversion functions for the previously mentioned transformation
representations. Not all conversions are supported by a dedicated function. Below is a table showing
which conversions are supported (in blue). The abbreviations for the rotation and translation
representations are shown as well.

The names of all the conversion functions follow a standard format. They follow the form
alpha2beta where alpha is the abbreviation for what you are converting from and beta is what
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you are converting to as an abbreviation. For example, converting from Euler angles to quaternion
would be eul2quat.

All the functions expect valid inputs. If you specify invalid inputs, the outputs will be undefined.

There are other conversion functions for converting between radians and degrees, Cartesian and
homogeneous coordinates, and for calculating wrapped angle differences. For a full list of
conversions, see “Coordinate Transformations and Trajectories” .

See Also

More About
• “Standard Units for Robotics System Toolbox” on page 2-70
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Execute Code at a Fixed-Rate
In this section...
“Introduction” on page 2-75
“Run Loop at Fixed Rate” on page 2-75
“Overrun Actions for Fixed Rate Execution” on page 2-75

Introduction
By executing code at constant intervals, you can accurately time and schedule tasks. Using a
rateControl object allows you to control the rate of your code execution. These examples show
different applications for the rateControl object including its uses with ROS and sending
commands for robot control.

Run Loop at Fixed Rate
Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.002257
Iteration: 2 - Time Elapsed: 1.011465
Iteration: 3 - Time Elapsed: 2.011186
Iteration: 4 - Time Elapsed: 3.014202
Iteration: 5 - Time Elapsed: 4.001980
Iteration: 6 - Time Elapsed: 5.001219
Iteration: 7 - Time Elapsed: 6.000373
Iteration: 8 - Time Elapsed: 7.000181
Iteration: 9 - Time Elapsed: 8.000670
Iteration: 10 - Time Elapsed: 9.000240

Each iteration executes at a 1-second interval.

Overrun Actions for Fixed Rate Execution
The rateControl object uses the OverrunAction property to decide how to handle code that takes
longer than the desired period to operate. The options are 'slip' (default) or 'drop'. This example
shows how the OverrunAction affects code execution.

Setup desired rate and loop time. slowFrames is an array of times when the loop should be stalled
longer than the desired rate.
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desiredRate = 1;
loopTime = 20;
slowFrames = [3 7 12 18];

Create the Rate object and specify the OverrunAction property. 'slip' indicates that the
waitfor function will return immediately if the time for LastPeriod is greater than the
DesiredRate property.

rate = rateControl(desiredRate);
rate.OverrunAction = 'slip';

Reset Rate object and begin loop. This loop will execute at the desired rate until the loop time is
reached. When the TotalElapsedTime reaches a slow frame time, it will stall for longer than the
desired period.

reset(rate);

while rate.TotalElapsedTime < loopTime
    if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
        pause(desiredRate + 0.1)
    end
    waitfor(rate);
end

View statistics on the Rate object. Notice the number of periods.

stats = statistics(rate)

stats = struct with fields:
              Periods: [1.0143 0.9965 1.0014 1.1026 1.0077 0.9991 0.9961 ... ]
           NumPeriods: 20
        AveragePeriod: 1.0225
    StandardDeviation: 0.0421
          NumOverruns: 4

Change the OverrunAction to 'drop'. 'drop' indicates that the waitfor function will return at
the next time step, even if the LastPeriod is greater than the DesiredRate property. This
effectively drops the iteration that was missed by the slower code execution.

rate.OverrunAction = 'drop';

Reset Rate object and begin loop.

reset(rate);

while rate.TotalElapsedTime < loopTime
    if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
        pause(1.1)
    end
    waitfor(rate);
end
stats2 = statistics(rate)

stats2 = struct with fields:
              Periods: [1.0143 0.9872 1.0096 1.9941 1.0006 0.9991 2.0073 ... ]
           NumPeriods: 16
        AveragePeriod: 1.2501
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    StandardDeviation: 0.4481
          NumOverruns: 4

Using the 'drop' over run action resulted in 16 periods when the 'slip' resulted in 20 periods.
This difference is because the 'slip' did not wait until the next interval based on the desired rate.
Essentially, using 'slip' tries to keep the AveragePeriod property as close to the desired rate.
Using 'drop' ensures the code will execute at an even interval relative to DesiredRate with some
iterations being skipped.

See Also
rateControl | rosrate | waitfor
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Accelerate Robotics Algorithms with Code Generation

In this section...
“Create Separate Function for Algorithm” on page 2-78
“Perform Code Generation for Algorithm” on page 2-79
“Check Performance of Generated Code” on page 2-79
“Replace Algorithm Function with MEX Function” on page 2-79

You can generate code for select Robotics System Toolbox algorithms to speed up their execution. Set
up the algorithm that supports code generation as a separate function that you can insert into your
workflow. To use code generation, you must have a MATLAB Coder™ license. For a list of code
generation support in Robotics System Toolbox, see Functions Supporting Code Generation.

For this example, use a inverseKinematics object with a rigidBodyTree robot model to solve for
robot configurations that achieve a desired end-effector position.

Create Separate Function for Algorithm
Create a separate function, ikCodegen, that runs the inverse kinematics algorithm. Create
inverseKinematics object and build the rigidBodyTree model inside the function. Specify
%#codegen inside the function to identify it as a function for code generation.

function qConfig = ikCodegen(endEffectorName,tform,weights,initialGuess)
    %#codegen
    
    robot = rigidBodyTree('MaxNumBodies',3,'DataFormat','row');
    body1 = rigidBody('body1');
    body1.Joint = rigidBodyJoint('jnt1','revolute');

    body2 = rigidBody('body2');
    jnt2 = rigidBodyJoint('jnt2','revolute');
    setFixedTransform(jnt2,trvec2tform([1 0 0]))
    body2.Joint = jnt2;

    body3 = rigidBody('tool');
    jnt3 = rigidBodyJoint('jnt3','revolute');
    setFixedTransform(jnt3,trvec2tform([1 0 0]))
    body3.Joint = jnt3;
    
    addBody(robot,body1,'base')
    addBody(robot,body2,'body1')
    addBody(robot,body3,'body2')

    ik = inverseKinematics('RigidBodyTree',robot);
    
    [qConfig,~] = ik(endEffectorName,tform,weights,initialGuess); 
end 

Save the function in your current folder.
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Perform Code Generation for Algorithm
You can use either the codegen function or the MATLAB Coder app to generate code. In this
example, generate a MEX file by calling codegen on the MATLAB command line. Specify sample
input arguments for each input to the function using the -args input argument

Specify sample values for the input arguments.

endEffectorName = 'tool';       
tform = trvec2tform([0.7 -0.7 0]);
weights = [0.25 0.25 0.25 1 1 1];
initialGuess = [0 0 0];

Call the codegen function and specify the input arguments in a cell array. This function creates a
separate ikCodegen_mex function to use. You can also produce C code by using the options input
argument.

codegen ikCodegen -args {endEffectorName,tform,weights,initialGuess}

If your input can come from variable-size lengths, specify the canonical type of the inputs by using
coder.typeof with the codegen function.

Check Performance of Generated Code
Compare the timing of the generated MEX function to the timing of your original function by using
timeit.

time = timeit(@() ikCodegen(endEffectorName,tform,weights,initialGuess))
mexTime = timeit(@() ikCodegen_mex(endEffectorName,tform,weights,initialGuess))

time =

    0.0425

mexTime =

    0.0011

The MEX function runs over 30 times faster in this example. Results might vary in your system.

Replace Algorithm Function with MEX Function
Open the main function for running your robotics workflow. Replace the ik object call with the MEX
function that you created using code generation. For this example, use the simple 2-D path tracing
example.

Open the “2-D Path Tracing with Inverse Kinematics” on page 2-14 example.

openExample('robotics/TwoDInverseKinematicsExampleExample')

Modify the example code to use the new ikCodegen_mex function. The code that follows is a copy of
the example with modifications to use of the new MEX function. Defining the robot model is done
inside the function, so skip the Construct the Robot section.
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Define The Trajectory

t = (0:0.2:10)'; % Time
count = length(t);
center = [0.3 0.1 0];
radius = 0.15;
theta = t*(2*pi/t(end));
points = center + radius*[cos(theta) sin(theta) zeros(size(theta))];

Inverse Kinematics Solution

Pre-allocate configuration solutions as a matrix, qs. Specify the weights for the end-effector
transformation and the end-effector name.

q0 = [0 0 0];
ndof = length(q0);
qs = zeros(count, ndof);
weights = [0, 0, 0, 1, 1, 0];
endEffector = 'tool';

Loop through the trajectory of points to trace the circle. Replace the ik object call with the
ikCodegen_mex function. Calculate the solution for each point to generate the joint configuration
that achieves the end-effector position. Store the configurations to use later.

qInitial = q0; % Use home configuration as the initial guess
for i = 1:count
    % Solve for the configuration satisfying the desired end effector
    % position
    point = points(i,:);
    qSol = ikCodegen_mex(endEffector,trvec2tform(point),weights,qInitial);
    % Store the configuration
    qs(i,:) = qSol;
    % Start from prior solution
    qInitial = qSol;
end

Animate Solution

Now that all the solutions have been generated. Animate the results. You must recreate the robot
because it was originally defined inside the function. Iterate through all the solutions.

robot = rigidBodyTree('MaxNumBodies',15,'DataFormat','row');
body1 = rigidBody('body1');
body1.Joint = rigidBodyJoint('jnt1','revolute');

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
setFixedTransform(jnt2,trvec2tform([0.3 0 0]))
body2.Joint = jnt2;

body3 = rigidBody('tool');
jnt3 = rigidBodyJoint('jnt3','revolute');
setFixedTransform(jnt3,trvec2tform([0.3 0 0]))
body3.Joint = jnt3;

addBody(robot,body1,'base')
addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
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% Show first solution and set view.
figure
show(robot,qs(1,:));
view(2)
ax = gca;
ax.Projection = 'orthographic';
hold on
plot(points(:,1),points(:,2),'k')
axis([-0.1 0.7 -0.3 0.5])

% Iterate through the solutions
framesPerSecond = 15;
r = rateControl(framesPerSecond);
for i = 1:count
    show(robot,qs(i,:),'PreservePlot',false);
    drawnow
    waitfor(r);
end

This example showed you how can you generate code for specific algorithms or functions to improve
their speed and simply replace them with the generated MEX function in your workflow.

See Also
codegen | timeit | inverseKinematics

Related Examples
• “2-D Path Tracing with Inverse Kinematics” on page 2-14
• Functions Supporting Code Generation
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
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Install Robotics System Toolbox Add-ons
To expand the capabilities of the Robotics System Toolbox and gain additional functionality for
specific tasks and applications, use add-ons. You can find and install add-ons using the Add-On
Explorer.

1 To install add-ons relevant to the Robotics System Toolbox, type in the MATLAB command
window:

roboticsAddons
2 Select the add-on that you want. For example:

• Robotics System Toolbox UAV Library
3 Click Install, and select either:

• Install
• Download Only... — Downloads an install file to use offline.

4 Continue to follow the setup instructions on the Add-Ons Explorer to install your add-ons.

To update or manage your add-ons, call roboticsAddons and select Manage Add-Ons.

See Also

Related Examples
• “Add-Ons”
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Code Generation from MATLAB Code
Several Robotics System Toolbox functions are enabled to generate C/C++ code. Code generation
from MATLAB code requires the MATLAB Coder product. To generate code from robotics functions,
follow these steps:

• Write your function or application that uses Robotics System Toolbox functions that are enabled
for code generation. For code generation, some of these functions have requirements that you
must follow. See “Code Generation Support” on page 2-84.

• Add the %#codegen directive to your MATLAB code.
• Follow the workflow for code generation from MATLAB code using either the MATLAB Coder app

or the command-line interface.

Using the app, the basic workflow is:

1 Set up a project. Specify your top-level functions and define input types.

The app screens your code for code generation readiness. It reports issues such as a function
that is not supported for code generation.

2 Check for run-time issues.

The app generates and runs a MEX version of your function. This step detects issues that can be
hard to detect in the generated C/C++ code.

3 Configure the code generation settings for your application.
4 Generate C/C++ code.
5 Verify the generated C/C++ code. If you have an Embedded Coder® license, you can use

software-in-the-loop execution (SIL) or processor-in-the-loop (PIL) execution.

For a tutorial, see “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder).

Using the command-line interface, the basic workflow is:

• To detect issues and verify the behavior of the generated code, generate a MEX version of your
function.

• Use coder.config to create a code configuration object for a library or executable.
• Modify the code configuration object properties as required for your application.
• Generate code using the codegen command.
• Verify the generated code. If you have an Embedded Coder license, you can use software-in-the-

loop execution (SIL) or processor-in-the-loop (PIL) execution.

For a tutorial, see “Generate C Code at the Command Line” (MATLAB Coder).

To view a full list of code generation support, see Functions Supporting Code Generation. You can
also view the Extended Capabilities section on any reference page.

See Also

More About
• Functions Supporting Code Generation
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Code Generation Support
To generate code from MATLAB code that contains Robotics System Toolbox functions, classes, or
System objects, you must have the MATLAB Coder software.

To view a full list of code generation support, see Functions Supporting Code Generation. You can
also view the Extended Capabilities section on any reference page.

See Also

More About
• “Code Generation from MATLAB Code” on page 2-83

2 Robotics System Toolbox Topics

2-84



Examples for Simulink Blocks

3



Convert Coordinate System Transformations
This model shows how to convert some basic coordinate system transformations into other coordinate
systems. Input vectors are expected to be vertical vectors.

open_system('coord_trans_block_example_model.slx')

Warning: Unrecognized function or variable 'registerTICCS'. 
Warning: Unrecognized function or variable 'customizationticcs'. 
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Compute Geometric Jacobian for Manipulators in Simulink
This example shows how to calculate the geometric Jacobian for a robot manipulator by using a
rigidBodyTree model. The Jacobian maps the joint-space velocity to the end-effector velocity
relative to the base coordinate frame. In this example, you define a robot model and robot
configurations in MATLAB® and pass them to Simulink® to be used with the manipulator algorithm
blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the homeConfiguration
function to get the home configuration or home joint positions of the robot. Use the
randomConfiguration function to generate a random configuration within the specified joint limits.

load('exampleRobots.mat','lbr')
lbr.DataFormat = 'column';
homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the robot model
and the configuration vectors. The 'tool0' body is selected as the end-effector in both blocks.

open_system('get_jacobian_example.slx')

Run the model to display the Jacobian for each configuration.

See Also
Blocks
Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix

Classes
rigidBodyTree
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Functions
externalForce | importrobot | homeConfiguration | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page 1-268
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Get Transformations for Manipulator Bodies in Simulink
This example shows how to get the transformation between bodies in a rigidBodyTree robot model.
In this example, you define a robot model and robot configuration in MATLAB® and pass them to
Simulink® to be used with the manipulator algorithm block.

Load the robot model of the KUKA LBR robot as a RigidBodyTree object. Use the
homeConfiguration function to get the home configuration as joint positions of the robot.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the robot model
and configuration vectors.

The Get Transform block calculates the transformation from the source body to the target body. This
transformation converts coordinates from the source body frame to the given target body frame. This
example gives you transformations to convert coordinates from the 'iiwa_link_ee' end effector
into the 'world' base coordinates.

open_system('get_transform_example.slx')
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Run the model to get the transformations.

See Also
Blocks
Get Transform | Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space
Mass Matrix

Classes
rigidBodyTree

Functions
importrobot | homeConfiguration | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page 1-268
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Calculate Manipulator Gravity Dynamics in Simulink
This example shows how to use the manipulator algorithm blocks to compute and compare dynamics
due to gravity for a manipulator robot.

Specify two similar robot models with different gravity accelerations. Load the KUKA LBR robot
model into the MATLAB® workspace and create a copy of it. For the first robot model, lbr, specify a
normal gravity vector, [0 0 -9.81]. For the copy, lbr2, use the default gravity vector, [0 0 0].
These robot models are also specified in the Rigid body tree parameters of the blocks in the model.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';
lbr2 = copy(lbr);
lbr.Gravity = [0 0 -9.81];

Open the gravity dynamics model. If needed, reload the robot models specified by the MATLAB code
using the Load Robot Models callback button.

open_system('gravity_dynamics_model.slx')

The Forward Dynamics block calculates the joint accelerations due to gravity for a given lbr robot
configuration with no initial velocity, torque, or external force. The Inverse Dynamics block then
computes the torques needed for the joint to create those same accelerations with no gravity by using
the lbr2 robot. Finally, the Gravity Torque block calculates the torque required to counteract gravity
for the lbr robot.

Run the model. Besides some small numerical differences, the gravity torque and the torque required
for accelerations due to gravity are the same value with opposite directions.

See Also
Blocks
Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix |
Velocity Product Torque
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Classes
rigidBodyTree

Functions
externalForce | importrobot | homeConfiguration | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page 1-268
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Trace An End-Effector Trajectory with Inverse Kinematics in
Simulink

Use a rigid body robot model to compute inverse kinematics using Simulink®. Define a trajectory for
the robot end effector and loop through the points to solve robot configurations that trace this
trajectory.

Import a robot model from a URDF (unified robot description format) file as a RigidBodyTree
object.

robot = importrobot('iiwa14.urdf');
robot.DataFormat = 'column';

View the robot.

ax = show(robot);

Specify a robot trajectory. These xyz-coordinates draw an N-shape in front of the robot.

x = 0.5*zeros(1,4)+0.25;
y = 0.25*[-1 -1 1 1];
z = 0.25*[-1 1 -1 1] + 0.75;

hold on
plot3(x,y,z,'--r','LineWidth',2,'Parent',ax)
hold off
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Open a model that performs inverse kinematics. The xyz-coordinates defined in MATLAB® are
converted to homogeneous transformations and input as the desired Pose. The output inverse-
kinematic solution is fed back as the initial guess for the next solution. This initial guess helps track
the end-effector pose and generate smooth configurations.

You can press the callback button to regenerate the robot model and trajectory you just defined.

close
open_system('sm_ik_trajectory_model.slx')
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Run the simulation. The model should generate the robot configurations (configs) that follow the
specified trajectory for the end effector.

sim('sm_ik_trajectory_model.slx')

Loop through the robot configurations and display the robot for each time step. Store the end-effector
positions in xyz.

figure('Visible','on');
tformIndex = 1;
for i = 1:10:numel(configs.Data)/7
    currConfig = configs.Data(:,1,i);
    show(robot,currConfig);
    drawnow

    xyz(tformIndex,:) = tform2trvec(getTransform(robot,currConfig,'iiwa_link_ee'));
    tformIndex = tformIndex + 1;
end

Draw the final trajectory of the end effector as a black line. The figure shows the end effector tracing
the N-shape originally defined (red dotted line).

figure('Visible','on')
show(robot,configs.Data(:,1,end));

hold on
plot3(xyz(:,1),xyz(:,2),xyz(:,3),'-k','LineWidth',3);
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plot3(x,y,z,'--r','LineWidth',3)
hold off

See Also
Objects
inverseKinematics | rigidBodyTree | generalizedInverseKinematics

Blocks
Inverse Kinematics | Get Transform | Inverse Dynamics

Related Examples
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics” on page 1-193
• “Inverse Kinematics Algorithms” on page 2-10
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Get Mass Matrix for Manipulators in Simulink
This example shows how to calculate the mass matrix for a robot manipulator using a
rigidBodyTree model. In this example, you define a robot model and robot configurations in
MATLAB® and pass them to Simulink® to be used with the manipulator algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the homeConfiguration
functions to get the home configuration or home joint positions of the robot. Use the
randomConfiguration function to generate a random configuration within the robot joint limits.

load('exampleRobots.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the robot model
and configuration vectors.

The Joint Space Mass Matrix block calculates the mass matrix for the given configuration.

open_system('mass_matrix_example.slx')
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Run the model to display the mass matrices for each configuration.

See Also
Blocks
Get Transform | Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque

Classes
rigidBodyTree

Functions
importrobot | homeConfiguration | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page 1-268
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Generate Cubic Polynomial Trajectory
This example shows how to generate a cubic polynomial trajectory using the Polynomial Trajectory
block.

Open the model. The block has a set of 2-D waypoints defined in the block mask. The Time input is
just a ramp signal to simulate time progressing.

open_system('cubic_polytraj_ex1.slx')

Run the simulation. The first figure shows the output of the q vector for the positions of the trajectory.
Notice the cubic polynomial shape to the trajectory between waypoints. The XY Plot shows the actual
2-D trajectory, which hits the waypoints specified in the block mask.
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Generate B-Spline Trajectory
This example shows how to generate a B-spline trajectory using the Polynomial Trajectory block.

Open the model. The Waypoints and TimeInterval inputs are toggled in the block mask by setting
Waypoint source to External. For B-splines, the waypoints are actually control points for the
convex polygon, but the first and last waypoints are met. The Time input is just a ramp signal to
simulate time progressing.

open_system('bspline_polytraj_ex1.slx')

Run the simulation. The first figure shows the output of the q vector for the positions of the trajectory.
The X Y Plot shows the actual 2-D trajectory, which stays inside the defined control points and hits
the first and last waypoints.
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Generate Rotation Trajectory
This example shows how to generate a trajectory that interpolates between rotations using the
Rotation Trajectory block.

Open and simulate the model. The Rotation Trajectory block outputs the trajectory between two
rotations and saves the intermediate rotations to the rotations variable. This example generates a
simple rotation trajectory from the x-axis to the z-axis.

open_system('rot_traj_ex1.slx')
simOut = sim('rot_traj_ex1.slx');

Use plotTransforms to plot the rotation trajectory.

numRotations = size(simOut.rotations,3);
translations = zeros(3,numRotations);
figure("Visible","on")

for i = 1:numRotations
    plotTransforms(translations(:,i)',simOut.rotations(:,i)')
    xlim([-1 1])
    ylim([-1 1])
    zlim([-1 1])
    drawnow
    pause(0.1)
end
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Use Custom Time Scaling for a Rotation Trajectory
This example shows how to specify custom time-scaling in the Rotation Trajectory block to execute
an interpolated trajectory. Two rotations are specified in the block to generate a trajectory between
them. The goal is to move between rotations using a nonlinear time scaling with more time samples
closer to the final rotation.

Specify the Time Scaling

Create vectors for the time scaling time vector and time scaling values. The time scaling time is linear
vector from 0 to 5 seconds at 0.1 second intervals. The time scaling values follow a cubic trajectory
with the appropriate derivatives specified for velocity and acceleration. These values are used in the
model.

tsTime = 0:0.1:5;
tsVals(1,:) = (tsTime/5).^3;        % Position
tsVals(2,:) = ((3/125).*tsTime).^2;  % Velocity
tsVals(3,:) = (18/125^2).*tsTime;   % Acceleration

Open the Model

The Clock block outputs simulation time and is used for querying the rotation trajectory at those
specify time points. The full set of time scaling time and values are input to the Rotation Trajectory
block, but the Time input defined when to sample from this trajectory. The MATLAB® function block
uses plotTransforms to plot a coordinate frame that moves along the generated rotation trajectory.

open_system("custom_time_scaling_rotation")

Simulate the Model

Simulate the model. The plot shows how the rotation follows a nonlinear interpolated trajectory
parameterized in time. The model runs with a fixed-step solver at an interval of 0.1 seconds, so each
frame is 0.1 seconds apart. Notice that the transformations are sampled more closely near the final
rotation.

sim("custom_time_scaling_rotation")
hold off
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Execute Transformation Trajectory Using Manipulator and
Inverse Kinematics

This example shows how to generate a transformation trajectory using the Transform Trajectory
block and execute it for a manipulator robot using inverse kinematics.

Generate two homogenous transformations for the start and end points of the trajectory.

tform1 = trvec2tform([0.25 -0.25 1])

tform1 = 4×4

    1.0000         0         0    0.2500
         0    1.0000         0   -0.2500
         0         0    1.0000    1.0000
         0         0         0    1.0000

tform2 = trvec2tform([0.25 0.25 0.5])

tform2 = 4×4

    1.0000         0         0    0.2500
         0    1.0000         0    0.2500
         0         0    1.0000    0.5000
         0         0         0    1.0000

Import the robot model and specify the data format for Simulink®.

robot = importrobot('iiwa14.urdf');
robot.DataFormat = 'column';
show(robot);
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Open the model. The Transform Trajectory block interpolates between the initial and final
transformation specified in the block mask. These transformations are fed to the Inverse
Kinematics block to solve for the robot configuration that makes the end effector reach the desired
transformation. The configurations are output to the workspace as configurations.

open_system('transform_traj_ex1.slx')

Run the simulation and get the robot configurations.

simOut = sim('transform_traj_ex1.slx')

simOut = 
  Simulink.SimulationOutput:
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         configurations: [7x1x52 double] 
                   tout: [52x1 double] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

Show the robot configurations to animate the robot going through the trajectory.

for i = 1:numel(simOut.configurations)/7
    currConfig = simOut.configurations(:,:,i);
    show(robot,currConfig);
    drawnow
end
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Use Custom Time Scaling for a Transform Trajectory
This example shows how to specify custom time-scaling in the Transform Trajectory block to
execute an interpolated trajectory. Two transformations are specified in the block to generate a
trajectory between the two. The goal is to move between transforms using a nonlinear time scaling
where the trajectory moves quickly at the start and slowly at the end.

Open the Model

A custom time scaling trajectory is generated using the Polynomial Trajectory block, which gives
the position, velocity, and acceleration defined by the custom time scaling at the instant in time, as
given by the Clock block. The Clock block outputs simulation time and is used for querying the
transformation trajectory at those specify time points. The input Waypoints define the waypoints of
the nonlinear time scaling to use and includes a shorter time interval between points near the final
time. The 3x1 time scaling, output from the Polynomial Trajectory block as q, qd, and qdd, is input
to the Transform Trajectory block with the current clock time as the TSTime, which indicates this
is the time scaling at that instance. The MATLAB® function block uses plotTransforms to plot a
coordinate frame that moves along the generated transformation trajectory.

open_system("custom_time_scaling_transform")

Simulate the Model

Simulate the model. The plot shows how the transformation follows a nonlinear interpolated
trajectory parameterized in time. The model runs with a fixed-step solver at an interval of 0.1
seconds, so each frame is 0.1 seconds apart. Notice that the transformations are sampled more
closely near the final transformation.

sim("custom_time_scaling_transform")

3 Examples for Simulink Blocks

3-26



 Use Custom Time Scaling for a Transform Trajectory

3-27



Generate Trapezoidal Velocity Trajectory
This example shows how to generate a trapezoidal velocity trajectory using the Trapezoidal Velocity
block.

Open the model. The waypoints are specified in the block mask. The position and velocity outputs are
connect to scopes and the position is plotted to an XY Plot. The Time input is just a ramp signal to
simulate time progressing.

open_system('trapvel_traj_ex1.slx')

Run the Simulation. The first figure shows the output of the q vector for the positions of the
trajectory. The second figure shows the qdd vector for the velocity. Notice the trapezoidal profile for
each waypoint transition. The XY Plot shows the actual 2-D trajectory, which hits the specified
waypoints.

Positions
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Velocities
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Compute Velocity Product for Manipulators in Simulink
This example shows how to calculate the velocity-induced torques for a robot manipulator by using a
rigidBodyTree model. In this example, you define a robot model and robot configuration in
MATLAB® and pass them to Simulink® to be used with the manipulator algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the homeConfiguration
function to get the home configuration or home joint positions of the robot.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the robot model
and configuration vector.

open_system('velocity_product_example.slx')
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Run the model. The Velocity Product block calculates the torques induced by the given velocities.
Verify these values by passing the same velocities to the Inverse Dynamics block with no acceleration
or external forces.

See Also
Blocks
Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix

Classes
rigidBodyTree

Functions
externalForce | importrobot | homeConfiguration | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks” on page 1-268
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Plan Path for a Unicycle Robot in Simulink
This example demonstrates how to execute an obstacle-free path between two locations on a given
map in Simulink®. The path is generated using a probabilistic road map (PRM) planning algorithm
(mobileRobotPRM). Control commands for navigating this path are generated using the Pure
Pursuit controller block. A unicycle kinematic motion model simulates the robot motion based on
those commands.

Load the Map and Simulink Model

Load the occupancy map, which defines the map limits and obstacles within the map.
exampleMaps.mat contain multiple maps including simpleMap, which this example uses.

load exampleMaps.mat

Specify a start and end locaiton within the map.

startLoc = [5 5];
goalLoc = [12 3];

Model Overview

Open the Simulink Model

open_system('pathPlanningUnicycleSimulinkModel.slx')

The model is composed of three primary parts:

• Planning
• Control
• Plant Model
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Planning

The Planner MATLAB® function block uses the mobileRobotPRM path planner and takes a start
location, goal location, and map as inputs. The blocks outputs an array of waypoints that the robot
follows. The planned waypoints are used downstream by the Pure Pursuit controller block.

Control

Pure Pursuit

The Pure Pursuit controller block generates the linear velocity and angular velocity commands
based on the waypoints and the current pose of the robot.
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Check if Goal is Reached

The Check Distance to Goal subsystem calculates the current distance to the goal and if it is within
a threshold, the simulation stops.

Plant Model

The Unicycle Kinematic Model block creates a vehicle model to simulate simplified vehicle
kinematics. The block takes linear and angular velocities as command inputs from the Pure Pursuit
controller block, and outputs the current position and velocity states.

Run the Model

To simulate the model

simulation = sim('pathPlanningUnicycleSimulinkModel.slx');

Visualize The Motion of Robot

After simulating the model, visualize the robot driving the obstacle-free path in the map.

map = binaryOccupancyMap(simpleMap)
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map = 
  binaryOccupancyMap with properties:

   mapLayer Properties
              LayerName: 'binaryLayer'
               DataType: 'logical'
           DefaultValue: 0
    GridLocationInWorld: [0 0]
      GridOriginInLocal: [0 0]
     LocalOriginInWorld: [0 0]
             Resolution: 1
               GridSize: [26 27]
           XLocalLimits: [0 27]
           YLocalLimits: [0 26]
           XWorldLimits: [0 27]
           YWorldLimits: [0 26]

robotPose = simulation.UnicyclePose

robotPose = 428×3

    5.0000    5.0000         0
    5.0000    5.0000   -0.0002
    5.0001    5.0000   -0.0012
    5.0006    5.0000   -0.0062
    5.0031    5.0000   -0.0313
    5.0156    4.9988   -0.1569
    5.0707    4.9707   -0.7849
    5.0945    4.9354   -1.1140
    5.1075    4.9059   -1.1828
    5.1193    4.8759   -1.2030
      ⋮

numRobots = size(robotPose, 2) / 3;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

for k = 1:size(xyz, 1)
    show(map)
    hold on;
    
    % Plot Start Location
    plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))
    text(startLoc(1), startLoc(2), 2, 'Start');
    
    % Plot Goal Location
    plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
    text(goalLoc(1), goalLoc(2), 2, 'Goal');
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    % Plot Robot's XY locations
    plot(robotPose(:, 1), robotPose(:, 2), '-b')
    
    % Plot Robot's pose as it traverses the path
    quat = eul2quat(thetaEuler(k, :), 'xyz');
    plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
        'groundvehicle.stl');
    
    pause(0.01)
    hold off;
end

© Copyright 2019 The MathWorks, Inc.
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Plan Path for a Differential Drive Robot in Simulink
This example demonstrates how to execute an obstacle-free path between two locations on a given
map in Simulink®. The path is generated using a probabilistic road map (PRM) planning algorithm
(mobileRobotPRM). Control commands for navigating this path are generated using the Pure
Pursuit controller block. A differential drive kinematic motion model simulates the robot motion
based on those commands.

Load the Map and Simulink Model

Load the occupancy map, which defines the map limits and obstacles within the map.
exampleMaps.mat contain multiple maps including simpleMap, which this example uses.

load exampleMaps.mat

Specify a start and end locaiton within the map.

startLoc = [5 5];
goalLoc = [20 20];

Model Overview

Open the Simulink model.

open_system('pathPlanningSimulinkModel.slx')

The model is composed of three primary parts:

• Planning
• Control
• Plant Model
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Planning

The Planner MATLAB® function block uses the mobileRobotPRM path planner and takes a start
location, goal location, and map as inputs. The blocks outputs an array of waypoints that the robot
follows. The planned waypoints are used downstream by the Pure Pursuit controller block.

Control

Pure Pursuit

The Pure Pursuit controller block generates the linear velocity and angular velocity commands
based on the waypoints and the current pose of the robot.
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Check if Goal is Reached

The Check Distance to Goal subsystem calculates the current distance to the goal and if it is within
a threshold, the simulation stops.

Plant Model
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The Differential Drive Kinematic Model block creates a vehicle model to simulate simplified
vehicle kinematics. The block takes linear and angular velocities as command inputs from the Pure
Pursuit controller block, and outputs the current position and velocity states.

Run the Model

simulation = sim('pathPlanningSimulinkModel.slx');

Visualize The Motion of Robot

After simulating the model, visualize the robot driving the obstacle-free path in the map.

map = binaryOccupancyMap(simpleMap);
robotPose = simulation.Pose;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

% Plot the robot poses at every 10th step.
for k = 1:10:size(xyz, 1) 
    show(map)
    hold on;
    
    % Plot the start location.
    plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))
    text(startLoc(1), startLoc(2), 2, 'Start');
    
    % Plot the goal location.
    plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
    text(goalLoc(1), goalLoc(2), 2, 'Goal');
    
    % Plot the xy-locations.
    plot(robotPose(:, 1), robotPose(:, 2), '-b')
    
    % Plot the robot pose as it traverses the path.
    quat = eul2quat(thetaEuler(k, :), 'xyz');
    plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
        'groundvehicle.stl');
    light;
    drawnow;
    hold off;
end
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Plan Path for a Bicycle Robot in Simulink
This example demonstrates how to execute an obstacle-free path between two locations on a given
map in Simulink®. The path is generated using a probabilistic road map (PRM) planning algorithm
(mobileRobotPRM). Control commands for navigating this path are generated using the Pure
Pursuit controller block. A bicycle kinematic motion model simulates the robot motion based on
those commands.

Load the Map and Simulink Model

Load map in MATLAB workspace

load exampleMaps.mat

Enter start and goal locations

startLoc = [5 5];
goalLoc = [12 3];

The imported maps are : simpleMap, complexMap and ternaryMap.

Open the Simulink Model

open_system('pathPlanningBicycleSimulinkModel.slx')

Model Overview

The model is composed of four primary operations :

• Planning
• Control
• Plant Model
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Planning

The Planner MATLAB® function block uses the mobileRobotPRM path planner and takes a start
location, goal location, and map as inputs. The blocks outputs an array of waypoints that the robot
follows. The planned waypoints are used downstream by the Pure Pursuit controller block.

Control

Pure Pursuit

The Pure Pursuit controller block generates the linear velocity and angular velocity commands
based on the waypoints and the current pose of the robot.
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Check if Goal is Reached

The Check Distance to Goal subsystem calculates the current distance to the goal and if it is within
a threshold, the simulation stops.

Plant Model
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The Bicycle Kinematic Model block creates a vehicle model to simulate simplified vehicle
kinematics. The block takes linear and angular velocities as command inputs from the Pure Pursuit
controller block, and outputs the current position and velocity states.

Run the Model

To simulate the model

simulation = sim('pathPlanningBicycleSimulinkModel.slx');

Visualize The Motion of Robot

To see the poses :

map = binaryOccupancyMap(simpleMap)

map = 
  binaryOccupancyMap with properties:

   mapLayer Properties
              LayerName: 'binaryLayer'
               DataType: 'logical'
           DefaultValue: 0
    GridLocationInWorld: [0 0]
      GridOriginInLocal: [0 0]
     LocalOriginInWorld: [0 0]
             Resolution: 1
               GridSize: [26 27]
           XLocalLimits: [0 27]
           YLocalLimits: [0 26]
           XWorldLimits: [0 27]
           YWorldLimits: [0 26]

robotPose = simulation.BicyclePose

robotPose = 362×3

    5.0000    5.0000         0
    5.0001    5.0000   -0.0002
    5.0007    5.0000   -0.0012
    5.0036    5.0000   -0.0062
    5.0181    4.9997   -0.0313
    5.0902    4.9929   -0.1569
    5.4081    4.8311   -0.7849
    5.5189    4.6758   -1.1170
    5.5366    4.6356   -1.1930
    5.5512    4.5942   -1.2684
      ⋮

numRobots = size(robotPose, 2) / 3;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
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theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

for k = 1:size(xyz, 1)
    show(map)
    hold on;
    
    % Plot Start Location
    plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))
    text(startLoc(1), startLoc(2), 2, 'Start');
    
    % Plot Goal Location
    plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
    text(goalLoc(1), goalLoc(2), 2, 'Goal');
    
    % Plot Robot's XY locations
    plot(robotPose(:, 1), robotPose(:, 2), '-b')
    
    % Plot Robot's pose as it traverses the path
    quat = eul2quat(thetaEuler(k, :), 'xyz');
    plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
        'groundvehicle.stl');
    
    pause(0.01)
    hold off;
end
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Plot Ackermann Drive Vehicle in Simulink
This example shows how to plot the position of an Ackermann Kinematic Model block and change it's
vehicle velocity and steering angular velocity in real-time.

Open the Simulink model.

open_system("plotAckermannDriveSimulinkModel.slx");

Ackermann Kinematic Block

The Ackermann Kinematic Model block parameters are the default values, but it is important to note
two parameters for this example, the Vehicle speed range and Maximum steering angle. Both
parameters limit the motion of the vehicle. The lower bound of the Vehicle speed range parameter
is set to -inf and the upper bound is set to inf, so the vehicle velocity can be any real value you set.
The Maximum steering angle is set to pi/4, so there's a max turning radius that the vehicle can
achieve.

Vehicle and Steering Velocity

The Ackermann Kinematic Model block takes two inputs, vehicle velocity and steering angular
velocity. This model uses Slider Gain blocks to change the inputs.

These values can be any real values within the parameter constraints set in the Ackermann Kinematic
Model block.

Graphing the Output

Using a demux block, the x and y signals of the state output connect to a XY Graph block. The
signals of stateDot and the other two signals of state connect to Display blocks.
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Run the Model

• Set the model run time to inf.
• Click Play to run the model. The graph will appear and you can see the path of the vehicle.
• Open the Slider Gain blocks and adjust the values of the blocks to see their affects on the path of

the vehicle.
• Adjust the graph limits as needed.
• Observe the Steering Angle display as you adjust the value of the Steering Gain.
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Follow Joint Space Trajectory in Simulink
This example shows how to use a Joint Space Motion Model block to follow a trajectory in
Simulink.

This example uses the Kinova Gen3 manipulator robot to follow the trajectories. Load the Gen3
manipulator using loadrobot and save the RigidBodyTree output as gen3. Open the Simulink
model.

[gen3,metadata] = loadrobot("kinovaGen3");

Open the simulink model.

open_system("followJointSpaceTrajectoryModel.slx");

Plan Trajectory

The Polynomial Trajectory block generates a trajectory from a set of waypoints specified in the
Waypoints parameter in joint space. This example uses five time points, specified row vector and
also the Kinova Gen3 has seven degrees of freedom, so the waypoints matrix must be a 7-by-5 size
matrix. The block is set up to generate a new set of waypoints every simulation.

Motion Model

The Joint Space Motion Model uses a RigidBodyTree, gen3, to calculate the joint positions to reach
the random trajectory generated by the Polynomial Trajectory block. Leave the other block
parameters as default.
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Visualize Results

The joint target positions and the calculated joint values from the Joint Space Motion Model
connect to a Scope block. Using the legend, you can select a smaller set of signals to compare with
better clarity.

Observe that the signals for the first joint start separated, and overlap when time is equal to 1s. So
from the initial configuration, the first joint was able to follow the trajectory.
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Follow Task Space Trajectory in Simulink
This example shows how to use a Task Space Motion Model to follow a task space trajectory.

Load Robot and Simulink Model

This example uses a Kinova Gen3 manipulator robot. Load the model using loadrobot.

[gen3,metadata] = loadrobot("kinovaGen3",'DataFormat','column');
initialConfig = homeConfiguration(gen3);
targetPosition = trvec2tform([0.6 -.1 0.5])

targetPosition = 4×4

    1.0000         0         0    0.6000
         0    1.0000         0   -0.1000
         0         0    1.0000    0.5000
         0         0         0    1.0000

Open the Simulink model.

open_system("followTaskSpaceTrajectoryModel.slx")

Trajectory Generation

The Transform Trajectory block creates a trajectory between the initial homogeneous transform
matrix of the end effector of the Gen3, and the target position over a 3 second time interval.

Follow Trajectory

The Joint Space Motion Model uses a RigidBodyTree, gen3, to calculate the joint positions to follow
the trajectory. The joint positions are converted to homogeneous transform matrices and then the
converted to a translation vector so that it is easier to visualize.
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Visualize Results

The joint target positions and the calculated joint values from the Task Space Motion Model
connect to a Scope block. Using the legend, you can select a smaller set of signals to compare with
better clarity. Observe that the x, y, and z positions of the end effector match closely with the x, y,
and z positions of the trajectory to the target position.
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